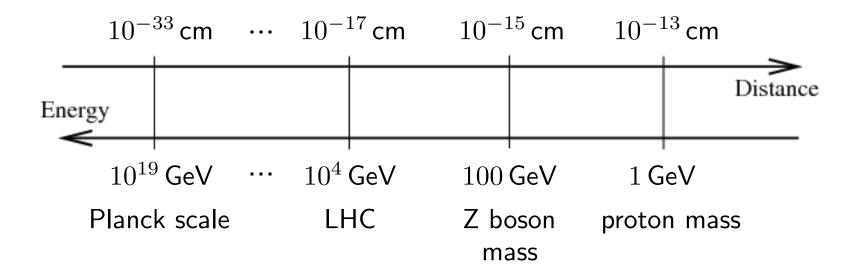

String Theory: The Quest for Phenomenological Predictions

Lilia Anguelova

(INRNE, Bulgarian Academy of Sciences)

The Big Picture

In recent years:


Gauge/Gravity Duality: powerful tool for studying

[AdS/CFT] strongly coupled gauge theories

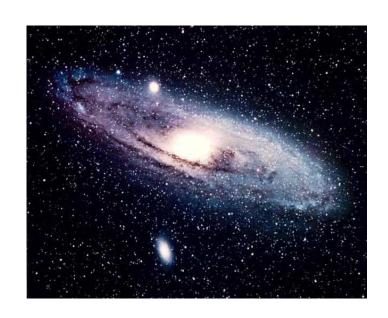
Planck (quantum gravity) scale:

Planck length:
$$l_p = \left(\frac{hG}{c^3}\right)^{1/2} \approx 10^{-33} \ \mathrm{cm}$$

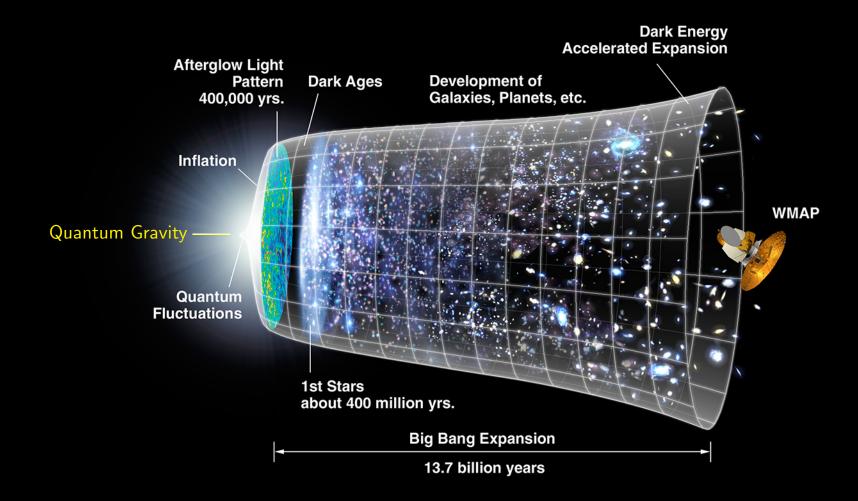
Planck energy:
$$E_p = \frac{hc}{l_p} \approx 10^{19} \text{ GeV}$$

1 Joule
$$\approx 10^{10} \, \mathrm{GeV}$$

Most of the time: Can neglect gravity in studies of elementary particle physics


(So we don't see the contradiction.)

BUT: There are places in the Universe, where that's not possible (where gravity is strong)!


Black Holes:

Black Holes are not rare: One at center of every galaxy!

Also, a time when Quantum Gravity crucial:

(Shortly after) Big Bang: Origin of all structure we see today!

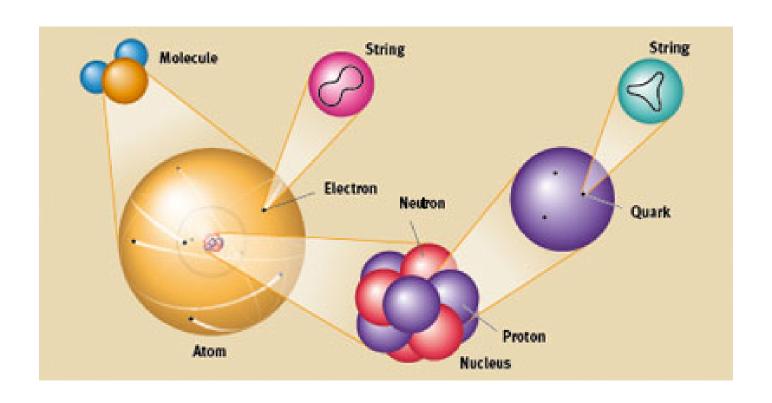
Why String Theory:

General Relativity - incompatible with Quantum Field Theory (Quantum Mechanics)

More precisely: Gravity - not renormalizable

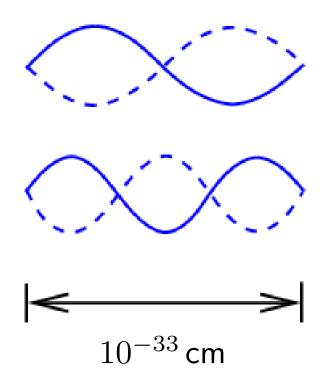
Nonrenormalizable theories:

Do not make sense within the framework of QFT!


String Theory: larger theoretical framework, which enables the study of nonrenormalizable theories

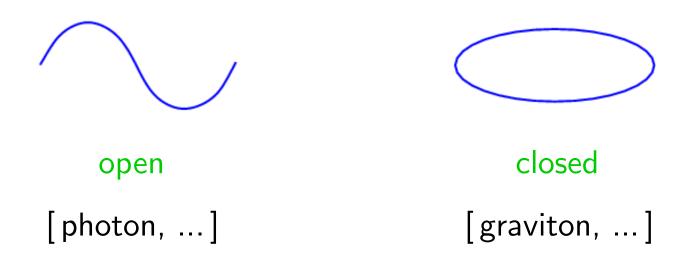
I.e.: It provides a UV completion to nonrenorm. FTs

In particular: Gives description of quantum gravity


What is String Theory:

Basic idea: Replace elementary particles with strings

Each vibrational pattern gives rise to a different elementary particle.

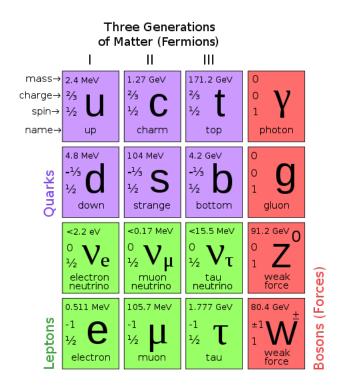

(Every mode of vibration: associated with certain mass, el. charge, spin, other quantum numbers)

Typical string size: of order the Planck length $[10^{-33}\,\mathrm{cm}]$

→ Strings look pointlike in present day experiments

Two kinds of strings:

Interactions:


⇒ removes UV divergences of QFT

Supersymmetry:

Important property of string theory:

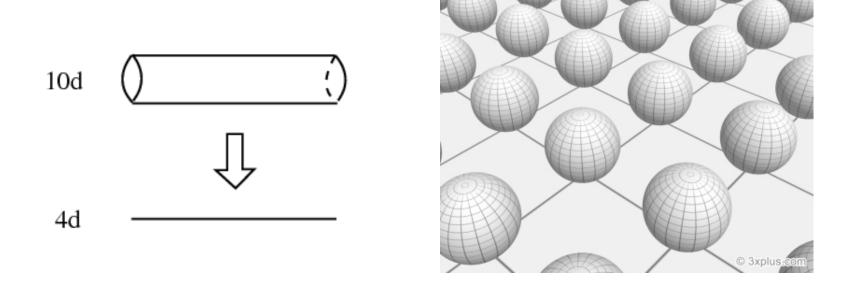
Symmetry between fermions and bosons

Standard Model of Particle Physics

Supersymmetry: Every particle in SM has a susy partner

Supersymmetry:

- Could be observed at the LHC
- Desirable for purely phenomenological reasons
 - Tames the quantum corrections to the masses of fundamental scalars (like Higgs boson)
 - Helps unify the gauge couplings of the EM, weak and strong interactions at high energies
- \rightarrow a lot of work on FT susy extensions of SM (MSSM etc.)

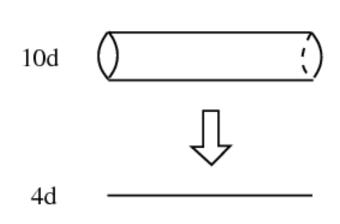

BUT: supersymmetry + gravity = supergravity, SUGRA - low energy effective action of string theory

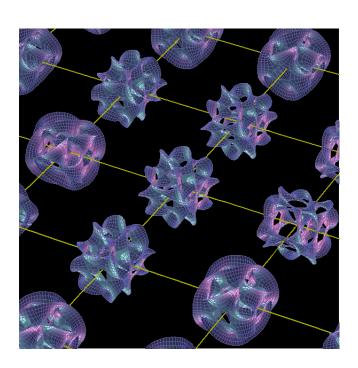
Indirect indication for string theory

Compactification:

Supersymmetric string theory: consistent only in 10 dimensions! [i.e., strings propagate in 10-dimensional space-time]

 \Rightarrow Need to compactify 6 dimensions:




→ Effective 4-dimensional description

Compactification:

Supersymmetric string theory: consistent only in 10 dimensions! [i.e., strings propagate in 10-dimensional space-time]

 \Rightarrow Need to compactify 6 dimensions:

→ Effective 4-dimensional description

Compactification:

Parity violation ⇒ fermions in Standard Model are chiral

So want chiral fermions in 4d susy EFT after compactification [technical term: N=1 susy in 4d]

⇒ restriction on internal 6d space [has to be Calabi-Yau]

6d manifold: many allowed deformations with no energy cost, allowed deformations: preserve equations of motion and supersymmetry conditions

In 4d effective theory:

Defs give rise to massless scalars without potential (moduli)

Simpler example:

Kaluza-Klein theory: 5d gravity on $M_4 \times S^1$

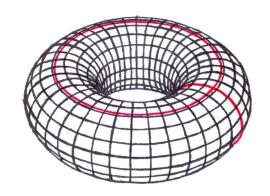
$$g_{mn}^{(5)} = \begin{bmatrix} g_{\mu\nu}^{(4)} & A_{\mu} \\ A_{\nu} & \phi \end{bmatrix}$$

Radius of S^1 : modulus

In 4d: S^1 size manifests itself as scalar ϕ

In general:

Moduli vevs determine 4d properties (couplings, masses etc.)


As long as moduli arbitrary: no predictivity

→ Need to generate potentials for the moduli! [then moduli would be fixed at minima]

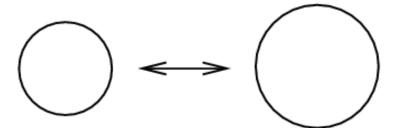
Moduli

Torus:

Topologically non-trivial 1-cycles [non-contractible curves]

Calabi-Yau 3-fold:

Topologically non-trivial 2-, 3- and 4-cycles [n-cycle: n-dim.]

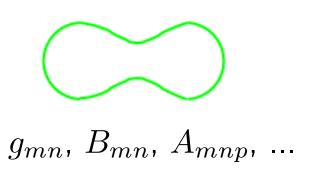

Moduli: deformations of these cycles

Size moduli:

[Kähler moduli]

Shape moduli:

[complex structure moduli]



Generating Moduli Potentials

(Moduli Stabilization)

Classical level:

Turn on background fluxes:

 B_{mn} , A_{mnp} : antisymmetric tensor field potentials [generalize EM potential A_{μ}]

Flux: $\langle B_{mn} \rangle \neq 0$, $\langle A_{mnp} \rangle \neq 0$

→ Complicates eqs. of motion and susy conditions;

In 4d: looks like a potential

More formally:

Background fluxes are due to higher-dimensional

analogues of EM field

[EM field strength: 2-form $F_2 = \frac{1}{2} F_{\mu_1 \mu_2} dx^{\mu_1} \wedge dx^{\mu_2}$]

In string theory:

 \exists p-form field strengths $F_p=\frac{1}{p!}F_{\mu_1...\mu_p}\,dy^{\mu_1}\wedge...\wedge dy^{\mu_p}$ [Ex.: Type IIA: F_2 , H_3 , F_4 , F_6]

Background flux: $F_p \neq dA_{p-1}$ globally

[i.e. topologically nontrivial configuration;

cannot be gauged away]

BUT: Fluxes backreact on the geometry

- ⇒ 6d manifold cannot be same as in fluxless case
 [cannot be Calabi-Yau anymore]
- ightarrow Need to consider generalized compactifications! [technical term: SU(3) structure manifolds]

Generalized compactifications:

Can be studied due to math developments from last decade

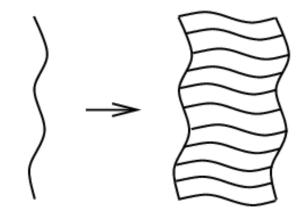
My work:

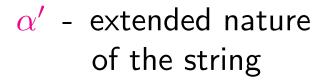
L.A. [JHEP 0901 (2009) 017, arXiv:0806.3820]; L.A. [Fortsch. Phys. 57 (2009) 492, arXiv:0901.4148];L.A., F. Larsen, R. O'Connell [JHEP 1011 (2010) 010, arXiv:1006.4981]:

– New method for systematic study of moduli stabilization:

Reformulated minimization of moduli potential into solving simplified set of algebraic equations

Quantum contributions:


Qualitatively important:


In many interesting cases: Fluxes not enough!

I.e., for some moduli no potential even in generalized comp.

For such moduli: quantum corrections are leading effect

• perturbative corrections:

 g_s - string loops

• non-perturbative effects:

D-branes:

Boundary conditions for open strings [dynamical hypersurfaces carrying charge]

Brane instantons:

Euclidean branes with p-dimensional worldvolume wrapping a p-dimensional internal submanifold

- L.A., C. Quigley, S. Sethi [JHEP 1010 (2010) 065, arXiv:1007.4793];
- L.A., D. Vaman [Nucl. Phys. B733 (2006) 132, arXiv:hep-th/0506191]:
 - Leading perturbative corrections to 4d moduli potential
- L.A., P. de Medeiros, A. Sinkovics [Adv. Theor. Math. Phys. 10 (2006) 713, arXiv:hep-th/0507089];
- L.A., K. Zoubos [JHEP (0610) (2006) 071, arXiv:hep-th/0606271]:
 - Membrane and five-brane instanton contributions
- L.A., K. Zoubos [Phys. Rev. D74 (2006) 026005, arXiv:hep-th/0602039]:
- L.A., C. Quigley [JHEP 1102 (2011) 113, arXiv:1007.5047];
 - Moduli stab. via comb. of classical and quantum effects
 - Existence of heterotic large volume minima
- L.A., R. Ricci, S. Thomas [Phys. Rev. D77 (2008) 025036, arXiv:hep-th/0702168];
- L.A., V. Calo [Nucl. Phys. B801 (2008) 45, arXiv:0708.4159];
- L.A., V. Calo, M. Cicoli [JCAP 0910 (2009) 025, arXiv:0904.0051]:
 - Finite temperature corrections

More formally: 4d N=1 Potential

Low energy effective description: Supergravity

N=1 SUGRA in 4d:

$$V=e^K(K^{i\bar{j}}D_iWD_{\bar{j}}\bar{W}-3|W|^2)\ ,$$

$$D_i=\partial_i+K_i\ ,\ K_i=\partial_iK\ ,\ K_{i\bar{j}}=\partial_i\partial_{\bar{j}}K\ ,\ K^{i\bar{j}}K_{\bar{j}\ell}=\delta^i_\ell$$

$$K\ -\ \text{K\"ahler potential}\ ,\ K_{i\bar{j}}\ -\ \text{K\"ahler metric}$$

$$W\ -\ \text{superpotential}$$

Different compactifications \rightarrow different K, W

Minima of $V\colon \ D_iW=0$ - supersymmetric $D_iW\neq 0 \ \text{- spontaneously broken susy}$

Classical and quantum contributions:

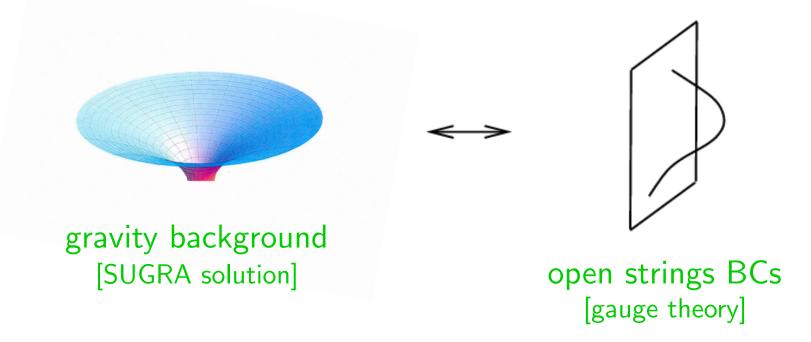
$$K(\Phi^i)=K_{cl}+K_{pert}+K_{non-pert}$$
 , Φ^i - moduli $W(\Phi^i)=W_{cl}+W_{non-pert}$, $W_{pert}\equiv 0$

Standard CY(3) compactifications $\Rightarrow V \equiv 0$

→ Need to consider additional effects!

Classical: background fluxes $ightarrow W_{cl}$

Perturbative: α' , g_s corrections $\rightarrow K_{pert}$


Non-perturbative: brane instantons $\rightarrow K_{np}$, W_{np}

Type IIB: W_{cl} (complex), W_{np} (Kähler)

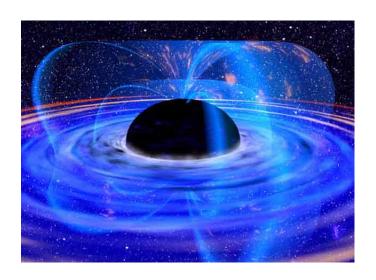
Gauge/Gravity Duality

(AdS/CFT correspondence)

Two different perspectives on D-branes in string theory:

A stack of large number of D-branes:

Two sides of duality encode same degrees of freedom [The two sides have equal partition functions!]


Gauge/gravity duality:

strong coupling \longleftrightarrow weak coupling

⇒ Can use classical supergravity to learn about strongly coupled gauge theories

Aside:

In principle: Could use gauge theory to learn about:

In practice: At present ???...

Gauge theory from gravity dual:

Possible applications:

- high T_c superconductivity
- quark-gluon plasma [viscosity/entropy density]
- dynamical electroweak symmetry breaking

Electroweak symmetry breaking:

Mass generation:

Fundamental scalar or strongly coupled gauge dynamics?

[Higgs boson] [technicolor]

Fund. scalar masses: destabilized by quantum corrections

→ need supersymmetry; still have fine-tuning

Gauge theory with two dynamical scales:

- L.A. [Nucl. Phys. B843 (2011) 429, arXiv:1006.3570]:
 - Gravity dual of chiral symmetry breaking

```
L.A., P. Suranyi, L.C.R. Wijewardhana [Nucl. Phys. B852 (2011) 39, arXiv:1105.4185]; L.A., P. Suranyi, L.C.R. Wijewardhana [Nucl. Phys. B862 (2012) 671, arXiv:1203.1968]; L.A., P. Suranyi, L.C.R. Wijewardhana [JHEP 1305 (2013) 003, arXiv:1212.1176]; L.A., P. Suranyi, L.C.R. Wijewardhana [arXiv:1306.1981]:
```

- S-parameter in dynamical electroweak SB
- Vector and scalar meson spectra
- No (techni-)dilaton

Another application of same gravitational background: Slow-walking Cosmological Inflation...

New method for verifying stability:

L.A., P. Suranyi, L.C.R. Wijewardhana [arXiv:1309.6678]:

In gauge/gravity duality: often need non-supersymmetric probe branes [for constructing duals of interesting gauge theories]

- \Rightarrow no guarantee that there is no $m^2 < 0$ perturbation
- → have to compute fluct. spectrum explicitly to verify that [requires numerical methods]

Our (analytical!) method:

- Look only at m=0 states. Their radial profile contains all necessary info about stability.
- Furthermore, m=0 fluct. profile can be obtained from classical solution, whose stability we are investigating.

Summary and Outlook

The picture so far:

String/M-theory compactifications: many moduli

 \rightarrow Need to stabilize them for phenomenology

Moduli stabilization:

Via combination of classical and quantum effects

⇒ Theory becomes predictive!

For the future:

- Concrete "(MS) Standard Model" compactification?...
- Early Universe cosmology (Inflation)?...
- Strongly coupled gauge theories?...

Common problem for both topics:

[Gauge/Gravity Duality and Moduli Stabilization]

String backgrounds with nonvanishing fluxes

 \rightarrow many open issues ...

Generalized complex geometry: metric + NS flux

Proposed exceptional generalized geometry:

$$metric + NS + RR flux ...$$
 (?)

A more natural unified description of metric and all fluxes:

? Generalized holonomy on an appropriate bundle ...

Thank you!