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Motivation

The present talk describes an attempt at implementing a robust, reliable, fast,
and highly accurate computational tool the main purpose of which is to enable
modeling of physical phenomena within numerical experiments asking for the
evaluation of large numbers of Riemann integrals by numerical methods.

For instance, the study of the behavior of a system under sudden change of an
inner order parameter, which results in drastic modification of the mathematical
properties of the integrand (e.g., in phase transitions or processes involving
fragmentation or fusion, nanostructures) cannot be accommodated within the
standard automatic adaptive quadrature (AAQ) approach to the numerical

solution, due to the impossibility to decide in advance on the correct choice of the
convenient library procedure.

The Bayesian automatic adaptive quadrature (BAAQ) approaches the
numerical solution of the integrals by merging rigorous mathematical criteria
with the reality of the hardware and software environments, such as to avoid, if
at all possible, unreliable outputs originating in the human factor.



References on the Standard Approach to

Automatic Adaptive Quadrature

The standard AAQ was systematically developed in
QUADPACK, the de facto standard of one-dimensional
numerical integration.

See:
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Standard Input Numerical Problem

Given the (proper or improper) Riemann integral

I[a,b)f = [ 'w(x) f(x)dx, —0<a<b<+o

we seek a globally adaptive numerical solution {Q,E > 0}
of 1t within input accuracy specifications {¢. >0,¢, = 0}

YO I blf - Q1< E <maxte, | Ilablf |.e,}

~ maX{gr |Q |9ga}



Permanent Features of the
Automatic Adaptive Quadrature (AAQ)

® The computation scheme developed within the AAQ approach implements an
integrand adapted discretization of [a, b], which defines a partition of [a, b],

I, [a,bl={a=x"<x'<- <x'< -+ <x"=b|N2=1}.

Over each subrange [x',x'] = [a,b] , a (possibly subrange dependent) local
quadrature rule yiclds a local pair {g, e} where, g stands for the output of an
interpolatory quadrature sum solving I[x'',x']f, while e > 0 stands for the
output of a probabilistic estimate of the local error associated to g.

® A partition dependent global pair solving I[a,b]lf,{Q =0, ,.E=E, >0}, is got
by summing up the individual outputs {g, e} over the subranges of the partition
I1,[a,b]. In what follows, to simplify notations, we will consider a generic
subrange [a, B] < [a,b] standing for any subrange [x',x'] of I1,[a,b].

® The number of subranges of 11, [a,b] starts with N =1 and, if necessary, it 1s
increased by gradual refinement of 11, [a,b] until either the global accuracy
criterion 1s satisfied, or a failure diagnostic 1s 1ssued.



Standard Approach to the
Automatic Adaptive Quadrature (SAAQ) |

® Implements the refinement of the partition I1,[a,b] as a subrange binary tree
the evolution of which 1s controlled by an associated priority queue.

The binary tree initialization equates the root with the input integration domain
[a, b] over which a first global output {Q,, £, > 0} 1s computed.

If the termination criterion is not fulfilled, then a recursive procedure is
followed: the priority queue is activated, the resulting root 1s bisected, local
estimates {g, e > 0} are computed over each resulting sibling, the global
quantities {Q,, E, > 0} are updated, the end of computation is checked again.

® The standard subdivision scheme can be supplemented with a convergence

acceleration algorithm if the occurrence of an integrand singularity was
heuristically inferred.

® Two remarks: First, SAAQ successfully solves integrals over continuous

integrands. Second, SAAQ fails badly under the occurrence of inner either
zero-measure or singular discontinuities of the integrand.

The BAAQ has to cope with both these circumstances.



Four Enhancements of the Standard |
Automatic Adaptive Quadrature (ESAAQ) (1))

® A more reliable local error estimator within Clenshaw-Curtis (CC) quadrature
uses 4-term CC-like error estimator [Gh. Adam & A. Nobile, IMAJNA, 11, 271-96 (1991)]

® Stabilization of the local quadrature sums as Riemann sums 1s checked by
means of two criteria:

(1) The output generated by each sibling of the current root is meaningful provided
in the pair {g, e > 0}, g carries out two accurate significant figures at least.

Otherwise, it is doubtful and the conventional values {q = 0, e = O} are returned,

where € denotes a very large positive number close to machine overflow.

(i) Let {q,, e,} denote the output carried by a meaningful parent brought to the
root
position. Let {g,, e,} denote the sums of the outputs coming from its two
siblings which are meaningful according to the criterion (1). If |g, - g,/ > ¢, + ¢,,
then conventional meanings are assigned to both descendants.

Note: The second criterion is effective for highly oscillatory integrands.



Four Enhancements of the Standard |
Automatic Adaptive Quadrature (ESAAQ)

The check of the local quadrature sums stabilization as Riemann sums
brings fundamental modifications to the update of the partition II,[a,b]
and the computation of the global output {Q,, £, > 0}.

® The priority queue brings to the root position every conventional subrange
before any meaningful subrange. Indeed, this is a straightforward consequence
of the fact that the place of a subrange in the priority queue list is determined by
the magnitude of its local quadrature error estimate.

® Conditional activation of the global termination criterion.
Is a consequence of the fact that the output brought by a subrange marked as
conventional 1s useless for the update of the global pair {Q,,, E,, > 0}.
An easy implementation of this feature was obtained by keeping record of
the number of subranges carrying conventional meaning and by attempting
the check of the global termination criterion only provided this number reaches
the floor value zero.



Optimistic Assumptions of the Standard AAQ |
Documented to Result in Pitfalls *?

» Guaranteed reliability of the local quadrature rule output
{q, e} over any subrange [«, f] Z[a,b].

% Nil effect of an accidentally occurring spurious local output
{q, e} on the global termination decision.

=» The global error estimates £ > 0 always provide upper
bounds to the (unknown) errors |I-Q)|.

®» The decision path defined inside the AAQ global control
chain always activates the right procedure for the
advancement to the solution.

® Fact: The use of bisection as the exclusive subrange
subdivision strategy results in failures whenever inner
finite discontinuities or singularities of the integrand (or its
first order derivative) are present.

®» Absence of Gibbs phenomenon



Critical Issues of the Bayesian
Automatic Adaptive Quadrature (BAAQ)

® Parameters to be simultaneously accounted for within BAAQ:

- Integrand profile (exceptional cases: zero, constant, linear; continuous slowly or
mildly variable and/or oscillatory; continuous highly variable and/or oscillatory;
almost continuous with endpoint or inner zero-measure discontinuities; almost
continuous with endpoint or inner singularities; a combination of all the above)

- Extension of the integration domain

- Occurrence of an explicitly defined weight function

® Fast algorithm convergence in case of zero-measure or singular discontinuity

points is secured provided these are brought to the interval endpoints entering
the partition 11, [a,b]. This cannot be done within the ESAAQ approach.

® Almost complete cancellation by subtraction is to be identified and diagnosed
along the lines defined within the standard AAQ (see QUADPACK).

* The finite binary floating point arithmetic which is implemented
in the hardware results in fundamental specific consequences.
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® The lower bound ¢

Range of the Admissible Values of

the Relative Error ¢,

An insightful relative error parameter ¢, satisfies
=g,/ ¢ e =2""%05-10"

r,max ? r,max

E 2E 2¢&

- min Stems from the finite length of the
significands of the floating point machine numbers.

Here, ¢, stays for the machine epsilon (the largest relative spacing)
denoting the smallest positive machine number ¢, for which

fIl.+¢g)>1; fId.+n)=1., Vne[0,¢,).

With the given empirical choice of ¢, ., related to the upper
bounde, .. ,1t1s always possible (and necessary) to get a relative
precision of the computed output O carrying out at least two
significant accurate decimal digits.



The Hardware Environment

64-bit floating point approximation of the real numbers. Is done via a
finite set of machine numbers of the form (1) s xb° (the 64-bit definition
assumed here asks for a radix b = 2, an exponent e = 11, a fixed length
significand s of 52 bits, and a sign bit)

Consequence: each machine number (except for 0,+00,-00,NaN) associates an
infinite subset of real numbers surrounding it over some real axis interval

Corollaryl: Bayesian decision path inferences are necessary for the
advancement toward the solution of the Riemann integrals by floating point
computations.

Corollary2: A nasty source of spurious output occurs whenever the
ordering relationship valid for pairs of real numbers is falsified while going
to machine numbers. Specifically, the real number ordering relationships “>,
larger” and “<, smaller” change to the “=, equal” ordering relationship over
the machine number set (hence result in false Bayesian inferences) whenever
two different real numbers are approximated by a same machine number.
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Algebraic Degree of Precision of an
Interpolatory Quadrature Sum

 An interpolatory quadrature sum approximation of the Riemann
integral [, B/, la,f]<[a,b] writes

Qn+1[a> lg]f — [[aa ﬂ]pn

where the interpolatory polynomial p,(x) values equate those of the
integrand function f(x) at a specific set of quadrature knots x,,

p,x)=f(x), k=0,1,.., n

 The quadrature sum g, ,[«, 8]/ solves exactly the polynomial
integrals over the fundamental power set,

q,.la Blx" =I[a, BIx", Vk=0,,--.d, V[a, B R
1 The maximum degree d, at which these identities hold, defines the
algebraic degree of precision of the quadrature sumgq, (o, B]f.

U Over the field of real numbers, d is a specific universal parameter
of a given interpolatory quadrature sum, irrespective of the extent
and localization of the integration domain on the real axis.



Forward Floating Point Degree of Precisior
of an Interpolatory Quadrature Sum (1) |

In the calculation over ‘R of the set of probe integrals

o, =100, p1x,, 7, (x)=> x', >0, m=01,--.d
each monomial x/ entering the integrand z,(x) brings a distinct,
non-negligible, contribution to o,,.
In floating point computations, the above property of the
monomials x! of bringing distinct, non-negligible contributions to
g, may get infringed both at integration limits f << 1 and § >> 1.
The maximum degree d;, <d at which the identity of the
individual monomial contributions 1s preserved in floating point
computations at f << 1 defines the forward floating point degree
of precision of the quadrature sum.
Its definition is formalized in the next slide.



Forward Floating Point Degree of Precision
of an Interpolatory Quadrature Sum (2) |

1. Let I[a, B1f denote the input integral of interest, defined over a finite
integration range [, S]c R .

2. Let g[a, ]/ denote an interpolatory quadrature sum of algebraic degree of
precision d , which solves /[a, #]/ through floating point computations over a
set of machine numbers characterized by a #-bit significand.

3. Let fI(a) denote the floating point approximation of a € R and let

X =max{/I(|a), (L]}, X >0, p=f(f-a|/X), 0<p<2.
4. If £ > 0 stands for either X or p, we define
p _{ d iff £=x,
* |llng,/In&] iff E<x,

where g, =2, x, = fl(g,"?), and [a] is the ceiling of fl(a).
5. Then the floating point degree of precision, 0 < d, <d of qla,Blf is
d, =min{d,, d }
with dy and d, computed from 4. for the terms X and p of the pair 3.



Variation of the Forward Floating Point
Degree of Precision with Interval Length

: H ' ' : : I : : : : : : : : : 1 . : .I III ! ; |
d=32 for real numbers o L, s N
- [=lzas 2]]: e
"[edad; §170 s—ee—]
“[j—l:B, j] 1]
"[j-1:16, j1"
"[j-1:32, j1" —e—

dg,< d except for
subranges of moderate

length placed around
the origin of real axis

Floating point degree of precision

ST [ —
H—
1 1 IR TR TN TR SR T | 1 1 PR TR TR SR T T | 1 1 IR TR TR S TR T |
1 10 100 1000

S. Adam, Gh. Adam, LNCS 7125, Springer (2012)



Local Quadrature Rules Coping with
the Hardware Environment

Given [a, 1R, let X =max{fI(a|), A( B}, X>0; p=f(B-a|/X), 0<p<2.
For Intel 8087 processor, g, =2, gy =22, 1, =u/g;, u =219,
T, = (§,/16)2, 1y = 271!

Range [a, f]| Characterization Reference g (¢,) | Auxiliary g (g,)
M : Y - 33 knot Clenshaw-Curtis | 21 knot Gauss-Kronrod
dCroSCcopIc o P~ v (CC-33) dpe =32 (GK-21) dgy =31
Mesoscopic X>1,, p>1, Simpson Trapeze/Rectangle

- Remaining {X, p}
Tin
Y machine numbers Trapeze Rectangle

Features:

» Macroscopic range - quasi-continuous machine number distribution inside

» Mesoscopic range — non-uniform discrete machine number distribution inside
 Tiny range — (quasi-)uniform machine number distribution inside
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Bayesian Qutput Assessment

(A) At the first attempt to solve the integral over [q, D]

(B)

» End computation if an exceptional case was detected (vanishing integrand, vanishing
output g for non-vanishing integrand, catastrophic cancellation by subtraction)
e End computation if the input accuracy criteria were met
 Propose the future decision path to be followed for:
- easy integral (e = |q,-q,| < 7))
- difficult integral (e 2 7))
Path followed in case of an easy integral
1. Pick up from the priority queue the subrange [«, ] [a,b] characterized by the
largest local error estimate e > 0.
2. Bisect it, compute pairs {q’, e'}, {q", e"}, over subranges, check stabilization as
Riemann sums .
3. If (stabilization) then Update global quantities O, E. Check for global termination.
4. If (NOT.stabilization .OR. .NOT.termination) then
If (e > e ") then
update the priority queue; go to step 1.
else change decision path to difficult.

(C) Path followed in case of a difficult integral

Cannot be characterized in a few lines. The following discussion is done for
macroscopic integration domains, the most frequently encountered case.



Partition of the Integration Domain |a, )]

® The advancement of the computation of a difficult integral I[a, b]f generates a partition
of [a, b], Iy={a=x0<x! < <xi<- xN=h}, N>2
® Two classes of subrange endpoints inside I1,;:
- Terminal endpoints:
» The ends a and b of [a, b]
» Inner abscissas x' 11, at which either f(x'—0)# f(x'+0) or f(x'=0)= f (x'+0)
- Two sided endpoints arc inner x' at which f(x'-0)= f(x'+0) and f(x'=0)= f(x'+0)
® Generation of terminal endpoints

Is the primary goal of the Bayesian analysis whenever an ill-conditioning diagnostic is
inferred to hold inside an iselated inner region of the subrange subject to the analysis.

The essential feature enabling solutions (under the occurrence of both singularities and
finite discontinuities) is the scale invariance property of the Bayesian conditioning
diagnostics of genuinely resolved integrand profiles.

The developed procedures use combined top-down (sharpening) and down-up (localization
to machine accuracy) approaches. Appropriate lateral limits inside the left and right
neighbourhoods of an inner terminal endpoint are generated both for the integrand and its first
order derivative.

® Generation of new two-sided endpoints

Is done if the Bayesian analysis established that either the allowed rate of variation of a
monotonic integrand was exceeded, or a non-vanishing number of integrand escillations was
missed within the integrand profile of the reference quadrature sum over the region of interest.



Tools for Bayesian Analysis:
Integrand Profiles

® Forany [a,f]c[a,b] we write the symmetric decomposition

[a, Bl=la, 1My, B, y=(B+a)/2, h=(f-a)/2.
® Over the left (/) and right (r) halves of [a, f], the floating point integrand values entering
the quadrature sums are computed respectively as

fi=fla+hn), f=f(B-hn),
0<np,<mp<-<np<--n =1 ne{n.,gnyg

stay for the floating point values of the reduced modified quadrature knots associated to
the CC and GK quadrature sums.

® Notice that f!=fla), 1,/ =1, =), f;” =f(B) are inherited from ancestor subranges
while at 0 <y, <1, values f//, f,” are computed at each attempt to evaluate /[o, /] f.

® Definition. The integrand profiles over half-subranges consist of appropriately chosen
sets of pairs {1, , f,'} and {7, , f,"} respectively, including those coming from the
abscissas pairs {a, y} and {y, B}.

® Three kinds of integrand profiles are of interest for Bayesian analysis:

- those involving the union of the CC-32 and GK-21 knots (enable Bayesian diagnostics on
the conditioning of f(x) over [o, £];

- those involving the CC-32 knots (enable inferences concerning the quality of g as a
Riemann integral sum)

- integrand profile pieces over either lateral or central close proximity neighbourhoods of
abscissas x' €11, .

where



Tools for Bayesian Analysis:
Finite Differences

Inferences on the integrand conditioning are got corroborating theorems of the
calculus with features of the integrand profile concerning:

- the sign and rate of variation of the integrand slope
- the sign of the integrand curvature.

The first order divided differences, defined over pairs of adjacent integrand profile
abscissas {(x,, f,), A = k-1, k} provide local approximations of the integrand slope.
A denominator-insensitive-to-subtraction definition is provided by the use of

reduced modified quadrature knots instead of the algebraic abscissas x; ,

dk—l,k = 5k—1,k /(M — 1) §k—1,k = fe = St

The sign of the curvature of f(x) may be inferred from the variation of the first order
divided differences over triplets of adjacent abscissas {(x,, f)), A= k-1, k, k+1}.

If {x_,,x.,x.,}e[x",x']cTII,,then we get simply
5k—1,k,k+1 = dk,k+1 - dk—l,k'
If, however, x, = x eIl v and x' is twe sided, then:
- inside (x;,x,,;): 5k—l,k,k+1 = dk,k+1 - /Bdk—l,k
- inside (X5 X)) SO gkt = 5_1dk,k+1 —d; 4

where p =" —x")/(x"—x").



Heuristic Equation to Zero of Negligible
Floating Point Differences

® Implementation steps
- Given the input pair of floating point computed values v, v,;
- Compute their difference d, = fl(v,-v,);
- Check negligibility criterion: ngl={|v, |,|v, |,u.} - & s—|d, |>0;
- Conditional equation to zero: If (ngl) d,, = 0.
Hardware environment: ¢ = ue, (u =4.); u. = u/e,
where ¢, 1s the machine epsilon, u is the machine underflow.

® Necessity. To make easy and stable Bayesian inferences concerning:

» Assessment of the relative magnitudes of the coefficients of the Chebyshev
series expansions of the integrand within the fast Chebyshev transform with
backward summation

» Rough localization and conditioning assessment of resolved monotonicity
interval ends within integrand profiles

» Identification and extension sharpening of monotonicity intervals of
vanishing curvature

» Sharpening localization of the inferred points of discontinuity, either at the
ends of or inside the monotonicity intervals.

® Feasibility: within the numerical quadrature of difficult quadrature problems, small
quantities always occur together with large quantities, which deminate the output
quality assessment and the accuracy of the decision processes.



Hardware and Software Conformity to
the IEEE 754 Standard

The IEEE 754 Standard governs the binary floating point

arithmetic (number formats basic operations, conversions,
and exceptional condltlons)

Hardware and Software conformity to the standard allows
doing a reliable and portable analysis.

Critical points where we have found deviations from the
standard:

1.  Floating point cemparisen operations involving RAM and
processor machine numbers of a same real number which
does not equate the approximating floating point numbers;

ii.  Unpredictable effects following from compiler code
optimization.
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New Priority Queue Perspective

O The (enhanced) standard automatic adaptive quadrature is
based on a priority queue which uses a simple key

0 Within the Bayesian approach a hierarchically distributed
tree structure of the terminal subranges is obtained.
It consists of four classes of subranges each of which is
characterized by different integral processing and priority queues
governing the subrange subdivision:
1. subranges in undefined state;
2. endpoint singular subranges,
3. well-conditioned subranges,
4. ill-conditioned subranges



Class: Undefined State

0 Definition: Undefined state: Characterizes the input integration
domain prior to the attempt to generate quadrature knots over it,
or the conditioning check has met a criterion pointing to an
insufficiently resolved integrand profile.

O Features:
— Defines a transient state in the priority queue
— Fach subrange in undefined state has the highest priority

—> All subranges falling in this class are candidates on
equal footing to analysis and validation (possibility for
parallel processing)



Class: State with Endpoint Singularity

O Definition: Endpoint singularity: May arise as a solution
of a boundary layer problem under ill-conditioning
diagnostic

O Features:

— Defines a transient state in the priority queue

—> FEach subrange in singular state is pending until all the
undefined state subranges are resolved

—> All subranges falling in this class get corroborated with
each other local accuracy assignments and parallel
processing is used to solve them




Class: Well-Conditioned State

O Definition: Well-conditioned state: All conditioning check
criteria ended successfully for undefined state input
or the current descendent comes from a well-conditioned parent.

O Features:

—> The priority of the well-conditioned subranges comes next after
that of the endpoint singular subranges

—> The integrand profiles of the well-conditioned subranges coming
from undefined state are stored and processed in parallel

—> 1. The global pair {Q, E > 0} is updated and end of computations
(eoc) is checked

— 2. If (NOT. eoc) then the assessment of the significance of the
local error estimates is set over the manifold of well-conditioned
subranges. The priority queue includes exclusively significant
well-conditioned subranges.

—> 3. Parallel processing is activated for: = subrange subdivision by
bisection; = activation of the local quadrature rules

— Go to step 1.



Class: IlI-Conditioned State

O Class rank in the priority queue:

the ill-conditioned (irregular) subrange class occupies
the lowest rank in the priority queue.

A low degree quadrature sum is used for the derivation
of an estimate of the value of the integral over the
irregular subranges.

O Bayesian inference:

the existence of representative subranges of such a class
points to the impossibility to solve the given integral
unless it is further analyzed and reformulated.
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Errors associated to AAQ solution of fundamental power series integrals
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Errors associated to AAQ solution of integrals involving cut centrifugal-like |

potential [ 1 - dx = arctan(b), b e[1,260]
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Errors associated to AAQ solution of the family of oscillatory integrals
j: e’ cos(ax) dx = 2e " [ psinh(p) cos(w) + wcosh(p)sin(w)]/(@” + p*)
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Errors associated to AAQ solution of the family of oscillatory integrals
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Errors associated to AAQ solution of the family of oscillatory integrals

Jl e’ sin(aw) dx = 2e " p cosh(p) sin(®) — wsinh( p) cos(w)]/(@* + p*)
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Errors associated to AAQ solution of the family of oscillatory integrals

Iol e 7 sinh( px)sin(@x) dx = 2e " p cosh( p)sin(®) — wsinh(p)cos(v)] /(& + p*)
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Standard Input Numerical Problem

Given the proper (or improper) Riemann integral

I[a,b)f = [ 'w(x) f(x)dx, —0<a<b<+o

we seek a globally adaptive numerical solution {Q,E > 0}
of 1t within input accuracy specifications {¢. >0,¢, = 0}

Y Ha,blf - Q1< E < maxi, | 1[a b1 |.2,)

~ max{gr |Q |Dga}

See Quadpack, NAG, elc.




Reliable Input Numerical Problem

Given the proper (or improper) Riemann integral

I[a,b)f = [ 'w(x) f(x)dx, —0<a<b<+o

we seek a globally adaptive numerical solution {Q,E > 0}
of 1t within input accuracy specifications {¢. >0,¢, = 0}

" | Ha,b1f - 0| < E <maxis, | I[ab1f |}

~min{g. ,max{s. |0, &, }}



Oscillatory Integrand

b

/O C;;(:xl)da; — %(1 4 (b)) me

e QUADPACK DQAWO (NAG DO1ANF):
out of 637 outputs, 505 spurious

Reason: decision of the control routine to
activate the ¢ algorithm.

e Present: all outputs reliable



Singular Integrand

= n/2—arctan(v2/2)+10g(3)/2

/1 dx
0 \/x2—|—233—2

Singularity at zs = V3 — 1.
e QUADPACK DQGKS (using GK10-21): out
of 105 outputs, 42 spurious
e Number of integrand evaluations needed to
get ten figure accuracy:

— QUADPACK DQGKP (using GK10-21) 294
(requires specification of singularity as input)
— Present (using GK10-21) 391
(from which 97 needed to identify and resolve
singularity to machine precision)



Singular Integrand

Separate Inteprand Profiles CC32 and GK21
g 1 I 1 1

Integrand values




Herged integrand profile CC+GK

Singular Integrand

=1} ==} [ w0 'y} o

sanTea pued3ajuyr

8.6

8.4



Singular Integrand

e e e Singularity is not a machine number:

1
p— . p— ,]_ ,
/() N range = [a, 1]

where a runs around the singular point

s = /3 — 1. Analysis has to face catastrophic
cancellation by subtraction.

e ¢ o Algebraically equivalent problem:

F(t) = - . range = [a,1] ,

\/|t2 + 24/3t]

where a runs around the singular point ts = 0O,
gets the analysis free of cancellation effects.




—#— local_calc_53
—— common_calc_53 ]
A true_53

Function values

10 0 10
Deviation from singular point x =v 3 - 1( |X5|80 units)

Illustration of inappropriateness of the value &, = 273



—® common_calc 52| |
—A— true_52 i
—#— |local_calc_52

------------------------------------------------------------------------------------------------------------------------------------------------------

____________________________________________________________________________________________________________________________________________________

Function values

e e e e e e e e e e e e o e e e Ry e e e e

_________________________________________________________________________________________________________________

1,0x107 = i ; : : i =
10 0 10

Deviation from singular point x =v 3 - 1( |Xs|80 units)

The value &, = 2% is right !




5x10 "

4x10"°

3x10"°

Function values

1x10™*

D_eviation from singular point x

Moving singularity at x, =0

s=0(units: u=2

! ' ! ' !
—0o— common_calc_1023
A true_1023
—%- local_calc_1023
e e —
" B
R 8
. By - ’ :
Kfltfiﬁ"a ; ; 3’ !ﬁhlihj
i . ; T ;
10 0 10

-1023
)

solves all troubles



Thank you for your attention !




