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MotivationMotivationMotivation

The present talk describes an attempt at implementing a The present talk describes an attempt at implementing a robust, reliable, fast, robust, reliable, fast, 
and and highly accuratehighly accurate computational tool the main purpose of which is to enable  computational tool the main purpose of which is to enable  
modeling of physical phenomenamodeling of physical phenomena within within numerical experiments numerical experiments asking for the asking for the 
evaluation of large numbers of evaluation of large numbers of Riemann integralsRiemann integrals by numerical methods.by numerical methods.

For instance, the study of the behavior of a system under For instance, the study of the behavior of a system under sudden changesudden change of an of an 
inner order parameterinner order parameter, which results in drastic modification of the mathematical , which results in drastic modification of the mathematical 
properties of the integrand (e.g., in phase transitions or proceproperties of the integrand (e.g., in phase transitions or processes involving sses involving 
fragmentation or fusion, nanostructures) fragmentation or fusion, nanostructures) cannot becannot be accommodatedaccommodated within the within the 
standard automatic adaptive quadrature standard automatic adaptive quadrature ((AAQAAQ)) approach to the numerical approach to the numerical 
solution, due to the impossibility to decide in advance on the csolution, due to the impossibility to decide in advance on the correct choice of the orrect choice of the 
convenient library procedure.convenient library procedure.

The The Bayesian automatic adaptive quadrature Bayesian automatic adaptive quadrature ((BAAQBAAQ)) approaches the approaches the 
numerical solution of the integrals by numerical solution of the integrals by merging rigorous mathematical criteriamerging rigorous mathematical criteria
with the with the reality reality of theof the hardware hardware andand software environmentssoftware environments,, such as to avoid, if such as to avoid, if 
at all possible, unreliable outputs originating in the human facat all possible, unreliable outputs originating in the human factor.tor.



The standard AAQ was systematically developed in 
QUADPACK, the de facto standard of one-dimensional 
numerical integration.

See:
• R.Piessens, E. deDoncker-Kapenga, C.W. Überhuber, D.K. Kahaner, 

QUADPACK, A Subroutine Package for Automatic Integration, 
Springer, Berlin, 1983

• P.J. Davis, P. Rabinowitz, Methods of Numerical Integration, 
Academic, NY, 1984

• A.R. Krommer, C.W. Ueberhuber, Computational Integration, 
SIAM, Philadelphia, 1998

• J.N.Lyness,  When not to use an automatic quadrature routine,   
SIAM Review, 25, 63-87 (1983)

• Gh. Adam,  Case studies in the numerical solution of oscillatory 
integrals,  Romanian J. Phys., 38, 527-538 (1993)
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See:
• Gh. Adam, S. Adam, Handling accuracy in Bayesian automatic adaptive quadrature, 

to be published in Journal of Physics: Conference Series (subm. 09 2014)
• Gh. Adam, S. Adam, Bayesian Automatic Adaptive Quadrature: an Overview, in 

Mathematical Modeling and Computational Science, LNCS, Vol. 7125, Eds. Gh. 
Adam, J. Busa, M. Hnatic, (Springer-Verlag, Berlin, Heidelberg), 2012, pp. 1-16 

• S. Adam, Gh. Adam, Floating Point Degree of Precision in Numerical Quadrature, 
in Mathematical Modeling and Computational Science, LNCS, Vol. 7125, Eds. Gh. 
Adam, J. Busa, M. Hnatic, (Springer-Verlag, Berlin, Heidelberg), 2012, pp. 189-194

• Gh. Adam, S. Adam, Quantitative Conditioning Criteria in Bayesian Automatic 
Adaptive Quadrature, in Proceedings of 2012 5th Romania Tier 2 Federation Grid, 
Cloud & High Performance Computing Science, UT Press, Cluj-Napoca, Romania 
(IEEE Conference Series), 2012, pp. 35-38
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6528239&url=http%3A%2
F%2Fieeexplore.ieee.org%2Fxpls%2Ficp.jsp%3Farnumber%3D6528239

• Gh. Adam, S. Adam, Principles of the Bayesian automatic adaptive quadrature, 
Numerical Methods and Programming: Advanced Computing (RCC MSU) 2009, 
Vol.10, pp. 391-397 (http://num-meth.srcc.msu.ru)

• Gh. Adam, S. Adam, N.M. Plakida, Reliability conditions in quadrature algorithms, 
Computer Physics Communications, Vol. 154 (2003) pp.49-64
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Given the (proper or improper) Riemann integral

we seek a globally adaptiveglobally adaptive numerical solution

of it within input accuracy specifications                    

i.e.,
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• The computation scheme developed within the AAQ approach implements an
integrand adaptedintegrand adapted discretizationdiscretization of [a, b], which defines a partitionpartition of [a, b],

Over each subrange                             , a (possibly subrange dependent) local local 
quadrature rulequadrature rule yields a local pair {q, eq, e} where, q stands for  the output of an 
interpolatoryinterpolatory quadrature sumquadrature sum solving                   , while  ee > 0 stands for the 
output of a probabilisticprobabilistic estimateestimate of the local error local error associated to q.

• A partition dependent global pairglobal pair solving               ,                , is got 
by summing up the individual outputs {q, eq, e} over the subranges of the partition            

In what follows, to simplify notations, we will consider a genericgeneric
subrange                          standing for any subrange     of                     

• The number of subrangesnumber of subranges of                  startsstarts with N = 1 and, if necessary, it is 
increased by gradual refinementgradual refinement of                 until either the global accuracy 
criterion is satisfied, or a failure diagnostic is issued.

Permanent Features of the 
Automatic Adaptive Quadrature (AAQ)

Permanent Features of the Permanent Features of the 
Automatic Adaptive Quadrature (AAQ)Automatic Adaptive Quadrature (AAQ)
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• Implements the refinement of the partition                as a subrange binary tree subrange binary tree 
the evolution of which is controlled by an associated priority queuepriority queue.
The binary tree initializationinitialization equates the root with the input integration domain 
[a, b] over which a first global output {Q1, E1 > 0} is computed. 
If the termination criterion is not fulfilled, then a recursive procedurerecursive procedure is   
followed: the priority queue is activated, the resulting root is bisectedbisected, local 
estimates {q, e > 0} are computed over each resulting sibling, the global  
quantities {QN, EN > 0} are updated, the end of computation is checked again.

• The standard subdivision scheme can be supplemented with a convergenceconvergence

acceleration algorithmacceleration algorithm if the occurrence of an integrand singularityintegrand singularity was  
heuristically inferred.

• Two remarks: First, SAAQSAAQ successfully solvessuccessfully solves integrals over continuous 
integrands. Second, SAAQ SAAQ fails badlyfails badly under the occurrence of inner either 
zero-measure or singular discontinuities of the integrand.

The BAAQ has to cope with both these circumstances. 

Standard Approach to the
Automatic Adaptive Quadrature (SAAQ)

Standard Approach to theStandard Approach to the
Automatic Adaptive Quadrature Automatic Adaptive Quadrature ((SAAQSAAQ))

],[ baN



• A more reliable local error estimator within ClenshawA more reliable local error estimator within Clenshaw--Curtis Curtis (CC) quadraturequadrature
uses 4-term CC-like error estimator [[GhGh. Adam & A. Nobile, . Adam & A. Nobile, IMAJNA,IMAJNA, 1111, 271, 271--96 (1991)]96 (1991)]

• Stabilization of the local quadrature sums as Riemann sums Stabilization of the local quadrature sums as Riemann sums is checked by  

means of two criteria: 
(i) The output generated by each sibling of the current root is meaningful meaningful provided

in the pair {q, e > 0}, q carries out two accurate significant figures at least. 
Otherwise, it is doubtfuldoubtful and the conventional values conventional values {q = 0, e = Ω} are returned,  

where Ω denotes a very large positive number close to machine overflow. 
(ii) Let {qp , ep} denote the output carried by a meaningful parent brought to the

root   
position. Let {qd , ed} denote the sums of the outputs coming from its two  
siblings which are meaningful according to the criterion (i). If |qp - qd| > ep + ed , 
then conventional meanings are assigned to both descendants. 

Note: The second criterion is effective for highly oscillatory integrands.

Four Enhancements of the Standard
Automatic Adaptive Quadrature (ESAAQ) (1)

Four Enhancements of the StandardFour Enhancements of the Standard
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The check of the local quadrature sums stabilization as Riemann sums 
brings fundamental modifications to the update of the partition ΠN[a,b]
and the computation of the global output {QN , EN > 0}.

• The priority queue brings to the root position every conventionaThe priority queue brings to the root position every conventional subrange l subrange 

before any meaningful subrange. before any meaningful subrange. Indeed, thisthis is a straightforward consequence 
of the fact that the place of a subrange in the priority queue list is determined by 
the magnitude of its local quadrature error estimate.  

• Conditional activation of the global termination criterion.Conditional activation of the global termination criterion.

Is a consequence of the fact that the output brought by a subrange marked as 
conventional is useless for the update of the global pair {QN , EN > 0}. 

An easy implementation of this feature was obtained by keeping record of 
the number of subranges carrying conventional meaning and by attempting 
the check of the global termination criterion only provided this numcheck of the global termination criterion only provided this number reaches ber reaches 
the floor value zero.the floor value zero.

Four Enhancements of the Standard
Automatic Adaptive Quadrature (ESAAQ) (2)

Four Enhancements of the StandardFour Enhancements of the Standard
Automatic Adaptive Quadrature Automatic Adaptive Quadrature (ESAAQ) (2)



Guaranteed reliabilityGuaranteed reliability of the locallocal quadrature rule output
{q, e} over any subrange .
Nil effectNil effect of an accidentallyaccidentally occurring spurious spurious local output
{q, e} on the globallobal termination decision.
The globalglobal error estimates E > 0 always always provide upper upper 
bounds bounds to the (unknown) errors |I-Q|.
The decision path decision path defined inside the AAQ global control 
chain always always activates the right procedure right procedure for the 
advancement to the solution.
Fact: The use of bisection bisection as the exclusiveexclusive subrange 
subdivision strategy results in failures failures whenever innerinner
finite discontinuities or singularities of the integrand (or its
first order derivative) are present.
Absence of Gibbs phenomenonGibbs phenomenon

Optimistic Assumptions of the Standard AAQ
Documented to Result in Pitfalls

Optimistic Assumptions of the Standard AAQOptimistic Assumptions of the Standard AAQ
Documented to Result in PitfallsDocumented to Result in Pitfalls
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• Parameters to be simultaneously accounted for within Parameters to be simultaneously accounted for within BAAQ:BAAQ:
-- Integrand profileIntegrand profile (exceptional cases: zero, constant, linear; continuous slowly or

mildly variable and/or oscillatory; continuous highly variable and/or oscillatory; 
almost continuous with endpoint or inner zero-measure discontinuities; almost 
continuous with endpoint or inner singularities; a combination of all the above)

- Extension of the integration domain Extension of the integration domain 
-- Occurrence of an explicitly defined weight functionOccurrence of an explicitly defined weight function

• Fast algorithm convergence Fast algorithm convergence in case ofin case of zerozero--measure or singular discontinuity measure or singular discontinuity 

points is secured provided these are brought to the interval endpoints is secured provided these are brought to the interval endpoints entering points entering 
the  partition               . the  partition               . ThisThis cannot be done cannot be done within thewithin the ESAAQ ESAAQ approach. approach. 

• Almost complete cancellation by subtraction Almost complete cancellation by subtraction is to be identified and diagnosed is to be identified and diagnosed 

along the lines defined within the standardalong the lines defined within the standard AAQAAQ (see QUADPACK)(see QUADPACK). 

• The finite binary floating point arithmetic which is implementedThe finite binary floating point arithmetic which is implemented

in the hardware results in fundamental specific consequences.in the hardware results in fundamental specific consequences.

Critical Issues of the Bayesian
Automatic Adaptive Quadrature (BAAQ)

Critical Issues of the BayesianCritical Issues of the Bayesian
Automatic Adaptive Quadrature Automatic Adaptive Quadrature (BAAQ)
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An insightfulinsightful relative error parameter εr satisfies

• The lower boundlower bound εr,min stems from the finite lengthfinite length of the 
significands of the floating point machine numbers.

Here, ε0 stays for the machine epsilon machine epsilon (the largest relative spacing) 
denoting the smallest positive machine number ε0 for which

• With the given empirical choice of εr,min , related to the upper upper 
boundbound εr,max , it is alwaysalways possible (and necessary) to get a relative 
precision of the computed output Q carrying out at least two 
significant accurate decimal digits.
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Range of the Admissible Values of 
the Relative Error εr

Range of the Admissible Values of Range of the Admissible Values of 
the Relative Error the Relative Error εr



• 64-bit floating point floating point approximation of the real numbers.  approximation of the real numbers.  Is done via a 
finite set of machine numbers finite set of machine numbers of the form                 (the 64-bit definition 
assumed here asks for a radixradix b = 2, an exponentexponent e = 11, a fixed length 
significand s of 52 bits, and a sign bitsign bit)

• Consequence: each each machine number (except for 0,+∞,-∞,NaN) associates an 
infinite infinite subset of real numbers surrounding it over some real axis interval

• Corollary1: Bayesian decision path inferences are necessary Bayesian decision path inferences are necessary for the 
advancement toward the solution of the Riemann integrals by floating point 
computations.

• Corollary2: A nasty source of spurious outputspurious output occurs whenever the 
ordering relationship ordering relationship valid for pairs of real numbers is falsified falsified while going 
to machine numbers. Specifically, the real number ordering relationships “>, 
larger” and “<, smaller” changechange to the “=, equal” ordering relationship over 
the machine number set (hence result in false Bayesian inferencesfalse Bayesian inferences) whenever 
two different real numbers two different real numbers are approximated by a same machine number.same machine number.

The Hardware EnvironmentThe Hardware EnvironmentThe Hardware Environment
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 An interpolatory quadrature sum approximation of the Riemann 
integral                                         writes

where the interpolatory polynomial pn(x) values equate those of the 
integrand function  f(x) at a specific set of quadrature knots xk,

 The quadrature sum                   solves exactlyexactly the polynomial 
integrals over the fundamental power setfundamental power set,

 The maximum degree d, at which these identities hold, defines the 
algebraic degree of precisionalgebraic degree of precision of the quadrature sum               

 Over the field of real numbers, d is a specificspecific universal parameteruniversal parameter
of a given interpolatory quadrature sum, irrespective of the extent extent 
and localizationand localization of the integration domain on the real axis.

Algebraic Degree of Precision of an
Interpolatory Quadrature Sum

Algebraic Degree of Precision of anAlgebraic Degree of Precision of an
Interpolatory Quadrature SumInterpolatory Quadrature Sum

pn(xk) = f (xk), k = 0, 1, ..., n..
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Forward Floating Point Degree of Precision
of an Interpolatory Quadrature Sum (1)

Forward Floating Point Degree of PrecisionForward Floating Point Degree of Precision
of an Interpolatory Quadrature Sum of an Interpolatory Quadrature Sum (1)

kx

In the calculation over      of the set of probe integralsIn the calculation over      of the set of probe integrals

each monomial  each monomial  xxll entering the integrand  entering the integrand  ππmm((xx)) brings a brings a distinct, distinct, 
nonnon--negligiblenegligible, contribution to , contribution to σσmm..
In floating point computations, the above property of the In floating point computations, the above property of the 
monomials monomials xxll of bringing distinct, nonof bringing distinct, non--negligible contributions to negligible contributions to 
σσmm may get infringed both at integration limits may get infringed both at integration limits ββ << 1<< 1 and and ββ >> 1>> 1..
The maximum degree               at which the identity of the The maximum degree               at which the identity of the 
individual monomial contributions is preserved in floating pointindividual monomial contributions is preserved in floating point
computations at computations at ββ << 1<< 1 defines the defines the forward floating point degree forward floating point degree 
of precisionof precision of the quadrature sum.of the quadrature sum.
Its definition is formalized in the next slide.Its definition is formalized in the next slide.
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1. Let                 denote the input integral of interest, defined over a finite 

integration range                    .

2. Let                 denote an interpolatory quadrature sum of algebraic degree of 

precision d , which solves                  through floating point computations over a 

set of machine numbers characterized by a t-bit significand. 

3. Let fl(a) denote the floating point approximation of               and let

4. If ξ > 0 stands for either X or ρ, we define 

where ε0 = 2-t,  xm = fl(ε0
1/d), and [a] is the ceiling of fl(a).

5. Then the floating point degree of precisionfloating point degree of precision,                     of                   is

dfp = min{dX, dρ}

with dX and dρ computed from 4. for the terms X and ρ of the pair 3.

Forward Floating Point Degree of Precision
of an Interpolatory Quadrature Sum (2)

Forward Floating Point Degree of PrecisionForward Floating Point Degree of Precision
of an Interpolatory Quadrature Sumof an Interpolatory Quadrature Sum (2)
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S. Adam, Gh. Adam, LNCS 7125, Springer (2012)

dfp< d except for 
subranges of moderate
length  placed around
the origin of real axis

d=32 for real numbers 

Variation of the Forward Floating Point 
Degree of Precision with Interval Length
Variation of the Forward Floating Point Variation of the Forward Floating Point 
Degree of Precision with Interval LengthDegree of Precision with Interval Length



Given                  , let
For Intel 8087 processor, εp = 2-64, ε0 = 2-52, τu = u/ ε0 , u = 2-1022 , 

τm = (εp/16)1/2, τM = 2-11

Local Quadrature Rules Coping with
the Hardware Environment

Local Quadrature Rules Coping withLocal Quadrature Rules Coping with
the Hardware Environmentthe Hardware Environment

RectangleTrapeze
Remaining {X, ρ} 
machine numbers

Tiny

Trapeze/RectangleSimpsonX > τu ,  ρ > τmMesoscopic

21 knot Gauss-Kronrod 
(GK-21)  dGK = 31

33 knot Clenshaw-Curtis 
(CC-33)  dCC = 32

X > τM ,  ρ > τMMacroscopic

Auxiliary q (q2) Reference q (q1)CharacterizationRange [α, β]

Features:Features:
•• Macroscopic range Macroscopic range -- quasiquasi--continuouscontinuous machine number distribution insidemachine number distribution inside
•• Mesoscopic range Mesoscopic range –– nonnon--uniformuniform discretediscrete machine number distribution insidemachine number distribution inside
• Tiny range Tiny range –– ((quasiquasi--))uniformuniform machine number distribution insidemachine number distribution inside

],[  .20  ),/|(|    ;0  |)},(||),(|max{   XflXflflX



OverviewOverviewOverview

 Introduction

 Hardware Environment

Bayesian Steps of the Analysis

 New Priority Queue Perspective

 A Few Case Studies



Bayesian Output AssessmentBayesian Output AssessmentBayesian Output Assessment

(A)  At the first first attempt to solve the integral overattempt to solve the integral over [a, b]
•• End computation End computation if an exceptional case exceptional case was detected (vanishing integrand, vanishing 
output q for non-vanishing integrand, catastrophic cancellation by subtraction)

•• End computation End computation if the input accuracy criteria were metaccuracy criteria were met
•• Propose Propose the future decision path decision path to be followed for:
- easy integral easy integral (e = |q1-q2| < τ0) 
- difficult integral difficult integral ((e ≥ τ0 )

(B)  Path followed in case of an easy integraleasy integral
1.  Pick up from the priority queue priority queue the subrange                          characterized by the 

largest largest local error estimate e > 0.
2.  Bisect Bisect it, compute compute pairs {q′, e′}, {q″, e″}, over subranges, check stabilization as  

Riemann sums .
3. If (stabilization) then Update global quantities Q, E. Check for global termination.global termination.
4. If (.NOT.stabilization .OR. .NOT.termination) then

If (e > e′+ e″) then
update update the priority queue; go to step 1.

else change change decision path to difficult.difficult.

(C)  Path followed in case of a difficult integral difficult integral 
Cannot be characterized in a few lines. The following discussion is done for
macroscopic macroscopic integration domains, the most frequently encountered case.
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• The advancement of the computation of a difficult integraldifficult integral I[a, b]f generates a partitionpartition

of  [a, b], ΠN = {a = x0 < x1 < ··· < xi < ··· xN = b}, N ≥ 2
• Two classes of subrange endpointssubrange endpoints inside ΠN:

-- Terminal endpoints:Terminal endpoints:
►► The The endsends a and b of [a, b]
►► Inner abscissas                 Inner abscissas                 at whichat which either

-- Two sided endpointsTwo sided endpoints are innerinner xi at which

• Generation of terminal endpoints terminal endpoints 
Is the primary goal of the Bayesian analysis whenever an illill--conditioningconditioning diagnostic is 

inferred to hold inside an isolated inner regionisolated inner region of the subrange subject to the analysis.
The essential feature enabling solutions (under the occurrence of both singularities singularities and

finite discontinuitiesfinite discontinuities) is the scale invariance property scale invariance property of the Bayesian conditioning 
diagnostics of genuinely resolved genuinely resolved integrand profiles.

The developed procedures use combined top-down (sharpeningsharpening) and down-up (localization localization 
to machine accuracyto machine accuracy) approaches. Appropriate lateral limits lateral limits inside the left and right 
neighbourhoods of an inner terminal endpoint are generated both for the integrand and its first
order derivative. 

• Generation of new twotwo--sidedsided endpointsendpoints
Is done if the Bayesian analysis established that either the allowed rate of variation of a 

monotonic monotonic integrand was exceeded, or a non-vanishing number of integrand oscillations oscillations was 
missed within the integrand profile of the reference quadrature sum over the region of interest.

Partition of the Integration Domain [a, b]Partition of the Integration Domain Partition of the Integration Domain [[a, ba, b]]

N
ix  )0()0(or      )0()0( ''  iiii xfxfxfxf

)0()0(   and   )0()0( ''  iiii xfxfxfxf



• For any                         we write the symmetric symmetric decompositiondecomposition

• Over the left left (l) and right right (r) halves of [α, β], the floating point integrand values entering 
the quadrature sums are computed respectively as

where 

stay for the floating point values of the reduced modified quadrature knotsreduced modified quadrature knots associated to 
the CC and GK quadrature sums. 

• Notice that  f0
l = f(α),  fn

l = fn
r = f(γ),  f0

r = f(β) are inheritedinherited from ancestor subranges 

while at  0 < ηk < 1, values fk
l, fk

r are computed at eacheach attempt to evaluate I[α, β] f.

• Definition. The integrand profiles over halfintegrand profiles over half--subrangessubranges consist of appropriately chosen 
sets of pairs sets of pairs {ηk , fk

l} and {ηk , fk
r} respectively, including those coming from the 

abscissas pairs {α, γ} and {γ, β}.
• Three kinds of integrand profiles are of interest for Bayesian analysis: 

- those involving the union of the involving the union of the CCCC--3232 and and GKGK--2121 knots knots (enable Bayesian diagnostics on 
the conditioning of ff((xx) ) over over [α, β];

- those involving the involving the CCCC--3232 knots knots (enable inferences concerning the quality of qCC as a 
Riemann integral sum)

- integrand profile pieces over either lateral or central close proximity neighbourhoods of 
abscissas 

Tools for Bayesian Analysis: 
Integrand Profiles

Tools for Bayesian Analysis: Tools for Bayesian Analysis: 
Integrand ProfilesIntegrand Profiles
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• Inferences on the integrand conditioning integrand conditioning are got corroborating theorems of the are got corroborating theorems of the 
calculus with features of the calculus with features of the integrand profile integrand profile concerning:

-- the sign sign and rate of variation rate of variation of the integrand slopeslope
-- the sign sign of the integrand curvature.integrand curvature.

• The first order divided differences, first order divided differences, defined over pairs pairs of adjacentadjacent integrand profile 
abscissas {(xλ , fλ), λ = k-1, k} provide local approximations of the integrand slope.integrand slope.

A denominatordenominator--insensitiveinsensitive--toto--subtractionsubtraction definition is provided by the use of 
reduced modified quadrature knots instead of the algebraic abscissas xλ ,

• The sign of the curvature sign of the curvature of f(x) may be inferred from the variationvariation of the first order 
divided differences over tripletstriplets of adjacentadjacent abscissas {(xλ , fλ), λ = k-1, k, k+1}.

If                                                    then we get simply 

If, however,                          and xi is two sidedtwo sided, then:

- inside

- inside

where
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•• Implementation stepsImplementation steps
-- Given Given the input pair of floating point computed values v1, v2;
-- Compute Compute their difference d12 = fl(v2 - v1);
-- Check Check negligibility criterion: 
-- Conditional Conditional equation to zero:  If (ngl) d12 = 0.

Hardware environment: Hardware environment: εroff = με0 (μ = 4.);  ur = u/εroff ,
where ε0 is the machine epsilon, u is the machine underflow.

•• Necessity.Necessity. To make easy easy and stable stable Bayesian inferences concerning:
►► AssessmentAssessment of the relative magnitudesrelative magnitudes of the coefficients of the Chebyshev 

series expansions of the integrand within the fast Chebyshev transform with 
backward summation

►► Rough localization Rough localization and conditioning assessmentconditioning assessment of resolved monotonicity
interval ends within integrand profiles

►► Identification Identification and extension sharpening extension sharpening of monotonicity intervals of 
vanishing curvature

►► Sharpening localization Sharpening localization of the inferred points of discontinuity, either at the
ends of or inside the monotonicity intervals.

•• Feasibility:Feasibility: within the numerical quadrature of difficultdifficult quadrature problems, smallsmall
quantities always occur together with largelarge quantities, which dominatedominate the output 
quality assessment and the accuracy of the decision processes.

Heuristic Equation to Zero of Negligible
Floating Point Differences

Heuristic Equation to Zero of NegligibleHeuristic Equation to Zero of Negligible
Floating Point DifferencesFloating Point Differences
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TheThe IEEE 754IEEE 754 StandardStandard governs the binary floating point 
arithmetic (number formats, basic operations, conversions, 
and exceptional conditions).

HardwareHardware and SoftwareSoftware conformity to the standard allows 
doing a reliablereliable and portableportable analysis.

Critical pointsCritical points where we have found deviationsdeviations from the 
standard:

i. Floating point comparisoncomparison operations involving RAM and 
processor machine numbers of a samesame real number which 
does not equate the approximating floating point numbers;

ii. Unpredictable effects following from compiler code compiler code 
optimizationoptimization.

Hardware and Software Conformity to
the IEEE 754 Standard

Hardware and Software Conformity toHardware and Software Conformity to
the IEEE 754 Standardthe IEEE 754 Standard
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o The ((enhancedenhanced)) standard automatic adaptive quadraturestandard automatic adaptive quadrature is 
based on a priority queuepriority queue which uses a simple keysimple key

o Within the Bayesian approachBayesian approach a hierarchically distributedhierarchically distributed
tree structuretree structure of the terminal subranges is obtained.
It consists of four classesfour classes of subranges each of which is 
characterized by different integral processing and priority queues 
governing the subrange subdivision:

1. subranges in undefined stateundefined state;;
2. endpoint singularendpoint singular subranges;
3. wellwell--conditionedconditioned subranges;
4. illill--conditionedconditioned subranges

New Priority Queue PerspectiveNew Priority Queue PerspectiveNew Priority Queue Perspective



o Definition:Definition: Undefined stateUndefined state:: Characterizes the input integrationinput integration
domaindomain prior to the attempt to generate quadrature knots over it,
oror the conditioning check has met a criterion pointing to an  
insufficiently resolved integrand profileinsufficiently resolved integrand profile..

o Features:Features:

→ Defines a transient statetransient state in the priority queue

→ Each subrange in undefined state has the highest priorityhighest priority

→ All subranges falling in this class are candidatescandidates onon
equal footingequal footing to analysis and validation (possibility for 
parallelparallel processing)

Class: Undefined State Class: Undefined State Class: Undefined State 



o Definition:Definition: Endpoint singularityEndpoint singularity:: May arise as a solution 
of a boundary layer problem under ill-conditioning
diagnostic

o Features:Features:
→ Defines a transient statetransient state in the priority queue
→ Each subrange in singular state is pendingpending until all the

undefined state subranges are resolved
→ All subranges falling in this class get corroborated with

each other local accuracy assignments and parallel parallel 
processing is used to solve them

Class: State with Endpoint SingularityClass: State with Endpoint SingularityClass: State with Endpoint Singularity



o Definition:Definition: WellWell--conditioned stateconditioned state:: All conditioning check
criteria ended successfully for undefined state input

oror the current descendent comes from a well-conditioned parent.
o Features:Features:

→ The priority of the well-conditioned subranges comes next after
that of the endpoint singular subranges

→ The integrand profiles of the well-conditioned subranges coming
from undefined state are stored and processed in parallel

→ 1. The globalglobal pair {QQ, EE > 0} is updated and end of computations
(eoc) is checked

→ 2. IfIf (.NOT. eoc) thenthen the assessment of the significancesignificance of the
local error estimates is set over the manifold of well-conditioned
subranges. The priority queue includes exclusively significant
well-conditioned subranges.

→ 3. ParallelParallel processing is activated for: = subrange subdivision by
bisectionbisection; = activation of the local quadrature ruleslocal quadrature rules

→ Go to step 1.

Class: Well-Conditioned StateClass: WellClass: Well--Conditioned StateConditioned State



o Class rank in the priority queue:Class rank in the priority queue:

the ill-conditioned (irregular) subrange class occupies
the lowest ranklowest rank in the priority queue.

A low degree quadrature sum is used for the derivation
of an estimate of the value of the integral over the 
irregular subranges.

o Bayesian inference:Bayesian inference:

the existence of representative subranges of such a class   
points to the impossibilityimpossibility to solve the given integral  
unless it is further analyzed and reformulated.

Class: Ill-Conditioned StateClass: IllClass: Ill--Conditioned StateConditioned State
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Errors associated to AAQ solution of fundamental power series integralsErrors associated to AAQ solution of fundamental power series inErrors associated to AAQ solution of fundamental power series integralstegrals

200 , ,1 ,0  ,
1

11

0



 n

n
dxxn



Errors associated to AAQ solution of integrals involving cut centrifugal-like
potential
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p = 1; x0 = -1
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Given the proper (or improper) Riemann integral

we seek a globally adaptiveglobally adaptive numerical solution

of it within input accuracy specifications                    

i.e.,
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Standard Input Numerical ProblemStandard Input Numerical ProblemStandard Input Numerical Problem

See Quadpack, NAG, etc.



Given the proper (or improper) Riemann integral

we seek a globally adaptiveglobally adaptive numerical solution
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Reliable Input Numerical ProblemReliable Input Numerical ProblemReliable Input Numerical Problem



Oscillatory IntegrandOscillatory IntegrandOscillatory Integrand



Singular IntegrandSingular IntegrandSingular Integrand



Singular IntegrandSingular IntegrandSingular Integrand
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Singular IntegrandSingular IntegrandSingular Integrand



Illustration of inappropriateness of the value ε0 = 2-53 Illustration of inappropriateness of the value ε0 = 2-53 

local_calc_53
common_calc_53
true_53



The value ε0 = 2-52 is right !The value ε0 = 2-52 is right !



Moving singularity at xs = 0 solves all troublesMoving singularity at xs = 0 solves all troubles



Thank you for your attention !


