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R
page 2: Motivation and Goals

Outline some directions of recent and future activity
Aim: establish collaborations on mathematical and theoretical physics,
geometry and physics

Four Directions

@ nonholonomic geometric flows evolution: (non) commutative spaces,
Lie algebroids with N—connections, almost symplectic structures

©@ (non) commutative geometry, almost Kahler and Clifford structures,
Dirac operators and effective Einstein and Lagrange—Finsler spaces

@ Ricci solitons in non—Riemanian geometry, modified gravity and
PDEs decoupling and off—diagonal solutions

© geometric methods in quantization of models with nonholonomic
nonlinear dynamics and anisotropic field interactions
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Almost Kahler Models for Einstein & Lagrange—Finsler Spaces Preliminaries: nonholonomic manifolds and bundles

slide 4: Almost Kéhler Models for Einstein & Lagrange-Finsler Spaces

Preliminaries: nonholonomic manifolds and bundles
Nonholonomic manifold: (V,N), [dim V = n+ m with finite n, m > 2]

N: TV=hTVeovTV

V=(V,Ng), TV,or TM = (TM,N, L), example 2+2+2+.... splitting
N—connection: C. Ehresmann — 1955, E. Cartan — 1935

Lagrange space (TM, L), J. Kern - 1974

regular Lagrangian £ = L(x, y), Pap = 2 ayaayb, det |hab| #0
Finsler geometry: L = F?(x,y), F(x,£y) = £F(x,y), € >0

Theorem: 292 9L _ 0 equivalent 9 +2G?(x,y) =0

dr oy’ ox'
y'=adx'/dr, for X'(7), S = y' 9% — Gad"f,a
when G2 = 1 h? ”+’(8y?:8xkyn+k 22)
N-coefficients: N2 = 3ﬁ+,, N = N3(x,y)dx' @ 0/dy?
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Almost Kahler Models for Einstein & Lagrange—Finsler Spaces Preliminaries: nonholonomic manifolds and bundles
slide 5:

Sasaki lift and canonical d—connections

Corollary: Sasaki lift from M to TM : y
prescribed £ — g = hg + v@, (g,N) ~ (g,N[L])

Def. d—connection D = (hD; vD), metric compatible if Dg = 0
Def. Ricci, Ric, and Einstein, E, of D; d—tens, d—vect: Y = hY + vY

Theor. D =V+ZandD =V +Z

Vv vVg=0; V7* =0, Levi—Civita connection
g=0— I? 0 I?g =0; hT*=0,v7T> =0, canonical d—connection
D: Dg=0; h7*=0,vi>=0, Cartan d—connection

g= {ga’ﬁ’} — ga/iN: [g/j» /N7ab]7 éa :N eaal € and ga/ﬁ’eaoleﬁ = gaﬁ
g = gijdX’ ® ax/ j‘ habéa 02y éb7 Q// = hn+/ n+js .
8, = (8 = 0, — N30, €, = 0,),8% = (€' = dx’, 8% = dy? + N2dx’)
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Almost Kahler Models for Einstein & Lagrange—Finsler Spaces Canonical almost Kahler variables, semi—Riemannian & LF

slide 6: Canonical almost Kahler variables, semi—Riemannian & LF

Canon alm complex: J(&;) = —es,; & J(es,i) =&, Jod = —1I
Neijenhuis: ¥'(X,Y) = —[X, Y] + [JX, JY] — JUX, Y] — J[X, JY]

Prop.-Def. V (g,J) — almost sympl struct (X, Y) := g (JX,Y)
@ almost Hermitian model of (V,g,N) :
H™" = (V7 9(’ ) =4d (Ja ) aJ)
@ H"™"is almost K&hler, K™*" if and only if d§ = 0

Theor.: The CaNrt~an d—connection D is a unique almost symplectic
d—connection: D =0and DJd =0

Theor.: Einstein manifold Ric = A\g_
canonical variables, Ric = A\g and Z = 0 y
Cartan type almost Kahler variables, Ric=\gandZ =0
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almost Kahler Lie Algebroids and N—-connections Distinguished Lie algebroids and prolongations

slide 7: almost Kahler Lie Algebroids and N—connections

Def.: d—algebroid: £ = (E, |-, -], p) over a manifold M :

1)N: TE=hE® VE

2) Lie aglebroid structure: 2a) a real vector bundle v : E — M,

2b) a Lie bracket |-, -] on Sec(r) of map

2c) anchor map p : E — TM, p : Sec(t) — X (M) of C>°(M)—modules

I X, Y] =F|X, Y]+ p(X)F)Y, VX, Y € Sec(r) and f € C(M)
p equivalent to a homomorphism between the Lie algebras

(Sec(r), |-,-]) and (X(M), |-, -])

Coefficient form: p(ea) = pi(x)e; and | e, ep] = CLy(X)er,

pa€ifhy — pf,e,'p’; = PI}C;b and > (ph9iChe + C5.Cly) =0
cycl (a,b,f)
Example: Nonholonomic Lie algebroids: E =TV, for V = (V,N)
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Distinguished Lie algebroids and prolongations
slide 8: N—adapted prolongation Lie algebroid

Lie d—algebroid & = (E, [+, -], p) and fibration = : P — M over the
same manifold M, u® = (x', yA) € P, particular P = E

anchor map p : E — TM and the tangent map T= : TP — TM, subset
TEP := {(b, v) € Ex x TxP; p(b) = Tpm(v); p € Px,7(p) = x € M}

Theor—Definition.

The the prolongation TEP := |, g TEP of a nonholonomic E over r is
another Lie d—algebroid

Z=22X,+ vAV, € TEP p™(2Z) = pL.Z%; + VA0,

Lie brackets [Xa, Ap|™ = CL A7, [Xa,VB]" =0, |Va,VB]"=0

(x2,VB) the dual bases to (X, Va)
differential calculus for N—adapted differential forms using
dx' = phxd, for dX" = —1CI, X3 A XP, and dy” = VA, for dVA =0
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almost Kahler Lie Algebroids and N—-connections Distinguished Lie algebroids and prolongations

slide 9: N—connections on prolongation Lie algebroids

Def. a h-v-spliting \": TEP = hTEP @ vTEP
Locally N =NA(xk, yB)dx' ® 94 and N = N2X2 @ V.

structures on TP and 7EP are compatible if N3 = NApL.
Using V4, generate sections 4, := X, — N4V4 as local basis of hTEP.

Corollary: N/ on TEP determines N-adapted frames

e = {02 = Xa— NEV;, Val,€f = {x2 68 = VB + NBxO)

Neigenhuis tensor "N of the operator h,

NG,y = b b —hlh, T —h BT+ R LA T
1
= 7§ngxanb®vC,
QY = 0NT —daNf + CopNF
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almost Kahler Lie Algebroids and N—connections Canonical structures on Lie d—algebroids

slide 10: Canonical structures on Lie d—algebroids

Def. d—connection, D = (hD, vD), on TEP is a linear connection preserving under
parallelism h—v—splitting

Def. torsion and curvature
T(Y, y) = Dyy — Dyy + I_Y, _VJW & R(Y, y)? = (Dy Dy — DVDY — DLYJ’JW) V4
sections X,y,z of TEP, Z = z%g = 2%, + z*Va, 0r Z = hz + vZ.

absolute different for N-adapted ew := {da, Va} and ef = {x~, 68}
associating to D a d—connection 1—form ' := Fzgeﬁ

N-adapted coefficients 7 = {T%_} and R = {R%_;
Prop—Definition. metric structure as a nondegenerate symmetric second rank tensor
9={943} =9=hgsvg

metric compatible data (g, D), Q@ = Dg = 0 for h—/ v—components.
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almost Kahler Lie Algebroids and N—connections Canonical structures on Lie d—algebroids

slide 11: Canonical d—connection and distortions

On TEP, g, — the standard torsionless Levi-Civita connection V
(which is not N—adapted)

Theor. 3 canonical d—connection D = hD + vD completely defined by
data (', g,7) for which Dg = 0

and zero h- and v-torsions of T : ?%f = Cabf and 7'/,‘30 =0.

Remarks:

1) There is a canonical distortion relation D V+ Z
2) hT* =0 for D on TM but h7* # 0 for D on TEP, T4, = C%,

Nonholonomic deformations:

D=V + °Z: h®T*=0andv°T>=0
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almost Kahler Lie Algebroids and N—-connections Almost Kahler Einstein and Lagrange Lie d—-algebroids

slide 12: Canonical N—connection and almost symplectic structures

Theor. V£ € C>(E) a canonical N = {N! = —1(da¢ + y2C},)}
determined by semi—spray configurations encoding the solutions of the
Euler—Lagrange equations

Prop. Vg = hg @ vg, g := §age5®eg = Gap X2 XL + Fap 09 ® 0P
€ = {02 = Xa— N[V, Vp} and &7 := {2, 40 = V0 + NP X'}

= {ga,ﬂ '} ey = el,e when g

— B ~
7/ﬂ e%/ e E’ gaﬁ

Riemann—Lagrange almost symplectic structures

Prop.—Def. vV £ — N canonical _almost complex structure on TEE following
formulas 7 (€2) = —Vmsa and J(Vmnia) = €a, JoJ =

d—tensor j:j%éaéaéa = —Vmnia® X2 +8,® 069, % — 6% /ef J‘l

Nijenhuis 7Q(X,y) = —[X,Y]+[TX, TY]-T[TX, Y]~ JF,TI
for any sections X,y of TEE.
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almost Kahler Lie Algebroids and N—-connections Almost Kahler Einstein and Lagrange Lie d—-algebroids

slide 13: Definition of prolongation almost Kéhler d—algebroids

almost Hermitian and Ké&hler d—algebroids

a) is defined by a triple #EE = (TEE, 0, J), where (X, y) := g(JX, )
b) A prolong Lie d—algebr #EE is KEE, if and only if dd = 0

For effective reqular Lagrange configurations,

Theor. Having chosen £, model equivalently a 7EE as a KEE. J

Proof. For (g = §, V', 7), 0(X.y) := §(JX.Y)
sections X,y of TEE, N—adapted 6 = §a,02 A XP, Oy = ere 0.3

Letd = } 59542 — 0= dsand df = ddo =0

0= 2 (X yO) X A X% 4 Jiag(xy O 157
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almost Kahler Lie Algebroids and N—-connections Almost Kahler Einstein and Lagrange Lie d—-algebroids

slide 14: The canonical almost symplectic d—connection

Def. A metric compatible almost symplectic d—connection on #EE of
TEE, Dy = 0,V section X of TEE.

Lemma: fix °D on TEE and construct almost symplectic D
Theor. On TEE, 3 unique normal d-connection

"D={h"D=(}Dy= ﬁa, "D = ﬁa); V™D = (pDa= ﬁA, "Dp = ﬁA)}
ﬁagbc =0and ﬁAQBC = 0, completely defined by g = g and £(x, y)

Theor. "D =D defines a unique almost symplectic d—connection, D = D,
Dg=0and T2, =TA; =0

Concl. [Q,Nﬁ =V + z?} ~ [g, LN, 25} ~ [é(., )i=8(T - ), 95}
The Lie algebroid structure functions (%, C!,) are encoded into
nonholonomic distributions on 7EE
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almost Kahler Lie Algebroids and N—-connections Almost Kahler Einstein and Lagrange Lie d—-algebroids

slide 15: almost Kahler Einstein and Lagrange Lie d—algebroids

Corollary-Definition The Ricci tensor of D on TEP with g is

Ric = {R.5 = RVOM}

N—adapted coefficients for Riemannian d—tensor R% ={R WS}
ﬁ = {Rab == R%pc; Raa:=—R°,p, Raa:= R® AaB> RAB =R ABC}

The scalar curvature °R := g*’R_; = 9%Rap, + g"®Rs.

the Einstein d-tensor E_5 := R 5 — 30,5 °

on T EE, or KEE, respectively, for D and D = D.

Prescribing (L; p}, Cf,), Ric = \g, Z = J

almost Kahler variables, Ric = \g, Z =0 )
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almost Kahler — Ricci Evolution and Lie Algebroids Perelman’s functionals in almost Kahler variables and XEE

slide 16: almost Kahler — Ricci Evolution and Lie Algebroids

Perelman’s functionals in almost Kéhler variables and XEE
Models of non—Riemannian Ricci flow evolution:
@ nonholonomic, Lagrange—Finsler flows, nonsymmetric metrics
@ noncommutative Ricci flows; almost Kahler and DQ flows
@ fractional derivative and diffusion evoluton
@ Lagrange—Ricci flows on T EE; Flows for KEE
Remark: proofs for [§ ~ §, £, N, D] ~ [6(-,) == &§(J-,-), D=V + Z]
Lemma: Perelman’s functionals equivalently in canon. almost K&hler form

F(9,D,f)

L (SR + |hDHZ + | vDH))e " av,

Vv

W@,D,7,7) — L[%( SR+ |WDF| + |vDH)? + F — 2mijiav
%
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almost Kéhler — Ricci Evolution and Lie Algebroids N-adapted metric and almost symplectic evolution egs

slide 17: N—adapted metric and almost symplectic evolution eqgs

Theorem: a) D preserving a symmetric metric structure g on 7FE

8agab = (Rab F Z/Cab) 0815 _ _(ﬁAB + EICAB)a
X ox
ﬁ aA = _Z’CaA7 R Aa = Z’CAaa
O~ B+ 2R+ |(P-2)T] - R- Z
ox ’

2 7(9,D,f) = [5Rap + ZiCap + (Da — ZNa)(}Sb - Z~b)?|~2
+|Rag + Zicag + (Da — Z4)(Dg — Z2p)f?le~"dv, [5;e~"dv = const.

b) § = §ar0? A XP and KEE, %jb = —ﬁ[ab]s ag;f = —ﬁ[AB]

On T E with D dagab = —Zﬁab 9 ag;és = _2ﬁAB,
& PN 2
=0, Raa=0, & ——AF+|DF -

)
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almost Kéhler — Ricci Evolution and Lie Algebroids Geometric thermodynamics of almost Kahler d—algebroids

slide 18: Geometric thermodynamics of almost Kahler d—algebroids

Theor. The Ricci flow evolution egs with symmetric metrics and
respective almost symplectic forms on 7EE and KEE are solutions of
egs with the Ricci d—tensor (previous slide) and

o A AT AT ~ 2m
oy =B+ ZA)f—&—’(Da—Za)f‘ _ g 2m
g{; = —1, and conditions for the "minus entropy":
38XW(g( )f( ) 7(x) _zfv%”ﬁ—g Z&B
HDe — (D5 ~ Z5)F ~Fral*l(4n7) e av,

J,, edv = const.
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almost Kéhler — Ricci Evolution and Lie Algebroids Geometric thermodynamics of almost Kahler d—algebroids

slide 19: Thermodynamical values
Remarks: stochastic processes, diffusion, fractional calculus, quantum entropy....

Theor. a) canonical thermodynamic values on TEE,
<A> — 7 [ ( R+ DI — D)a dv,8 = — [,[7( *R+|DI]2) + T —2mi av
5 =27 [,[[Ry5 — Zicys + (Da— Za)(D5— Z5)f — 29512l av
b) and/or by effective Lagrange and/or almost Kahler Ricci flows on KEE,
(E)
1

&g = 27 /v[|ﬁag+ﬁaﬁ f— 520550

7 [ R+ B — Dy, 8=~ [ 7 R+ (D7) +F - 2mlj v
v v

av

=

Proof: using Z = exp { Jol=F+m] ﬁdv} on KEE, V — D, or V — D

partition funct Z = [ exp(—BE)dw(E) for a canonical ansamble at temperature 3~';
temperature is defined by the measure determined by the density of states w(E);
statistical analogy computing thermodynamical values: (E) := —dlog Z/08,

entropy S := S (E) + log Z and the fluctuation o := <(E - (E>)2> = 0%log Z/9?
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almost Kahler Solitons with Lie Algebroid Symmetries Preliminaries on Lie d—algebroid solitons

slide 20: almost Kahler Solitons with Lie Algebroid Symmetries

Preliminaries on Lie d—algebroid solitons

Def. The geometric data [g ~ §, £, N, D] ~ [0(-,-) :=§(T - ,-), °D =V + Z]
for a complete Riemannian metric g on a smooth 7EE, KEE define a gradient almost
Kahler—Ricci d—algebroid soliton if 3 a smooth potential function #(x’, y©)
Ry +DyD57 = Mg

equivalently, ‘R 5 + "Dz ‘Dt = 05,
3 three types: A\ = const : steady ones, for A = 0; shrinking, for A > 0; and expanding,
for A < 0.
Prop. Let (g ~ §, £,V, D; &) be a complete shrinking soliton on 75E, KEE.
Using nonholonomic frame deformations, redefined #(x’, y©), forg ~ g,

R 37 + DgDyk = A0 35

Z =0 and/or Z = 0 result in the Levi—Civita configurations.
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almost Kahler Solitons with Lie Algebroid Symmetries Generalized Einstein egs encoding Lie d—algebroid structures

slide 21: Generalized Einstein egs encoding Lie d—algebroid structures

R = €5k = K5 = CONst, i.e. dak = Xak — NEkc = 0 and Vak = ria.

E = P with 2 + 2 splitting, a,b,... =1,2;/,j/,...=1,2and A, B, ... = 3,4.
ut = (x',y8) = (x",x%,y%, y*), on T®E, g -3,

Prime metric

)

g = J.(ue*®e’=g(x)dx @ dx' + hy(x,y)e? @ e?,
e® = (dx',e?=dy?+ Na(u)dx’),
e. = (e =0a/0y?— NP(u)d/dyP, es=08/dy?).
h* := 05 and NV§ = wa(x*, y®), Ni = na(x*, y°).
Target metric
0.7 9% = g, X 0 X+ g4 dh @ o
Na(X¥)32X? @ X2 + na(x*, y®)had? ® 64

(]
Il
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almost Kahler Solitons with Lie Algebroid Symmetries Generalized Einstein egs encoding Lie d—algebroid structures
slide 22:

Propos. 93 — Xz and V4 = 04

-Rl = -R3= ?[/’\ﬁ( 92) — X1g21g/1\/192 _ ()(21;75)2
+Xp(Xo01) — Zgég?:zgz _ (2622511 Pl
)2 * fp
R = R g G- =
Rea = 2WTa R — (2‘;1;) fZ/::] 4h4(2c'a3f73 X;:M)_ 9‘;2? —o,
R = i + G = o) i =0

for the potential function Xak — Wakg — Nakg = 0 and Vak = ka,
LC conditions Z = 0;

wi = (Xa — wad3) In\/|hs], (Xa — wad3) In \/|hs| = 0, Xpwa = XaWp, N = 0,0anp = OpNa.
a nontrivial source ), ga = c2€¥(*), e, = +1and h% # 0,
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Generalized Einstein egs encoding Lie d—algebroid structures
slide 23: Generating off-diagonal solutions

Theor. PDEs decouple in N—adapted form,

e X1 (X1Y) + e2Xo(Xoy)) = 2
S*h; = 2hgha
pwa—aa = 0,
m*+yny = 0,

for ag = h;0ae, 8 = h 6",y = (inlha/2/hs|) ",

generating function ¢ = In |y /+/|hsha]|
LC—solutions:

( )

ds? = e*) ey (X1)2 + ea(X2)?] + 5 VB + (XAA[P) X2 + e4— [v“ + (Xan)X%)?

4|/\\

the solutions defining Ricci solitons can be with nontrivial torsion.
Remark: nonholonomically induced torsion,

2

AL Xad 2
a6 = o0 (X1 + ep(X22) + o2 P+ T X 4 eyl P 4 (1 oma [ N

(24)°

where the values z3(xk, y3) and z4(xk, y3)
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Nonholonomic Spinors, Dirac Operators and Ricci Flows Nonholonomic Clifford structurs

page 24: Nonholonomic spinors and Dirac operators
Clifford d—algebra, A V"*™ algebra, product uv + vu = 2g(u, v) I;

hyhy 4 by hy=2"u,v)", , Yu Yv+ “vVu=2 Yh("u, “v) "I,

u=("u, "u), v=("v, Vv) € V™™ 1 " and "I are unity matrices
(n+m) x (n+m),ornx nand mx m.

A metric "g on hV is defined by sections of ThV provided with a bilinear
symmetric form on continuous sections I'(T hV).

Clifford h—algebras "CI(TyhV), in any point x € ThV,

vy + v =2 g L

Definition: A Clifford d—space on V, with g(x, y) and N is a Clifford bundle
CI(V) = hcl(hV) & vcI(vV), Clifford h—space "CI(hV) = hCI(T*hV), Clifford
v—space “CI(vV) = VCI(T*vV).

y
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page 25: (Almost Kahler) N—adapted Dirac operators
d-gamma matrix relations %% + VBM 2588 I,

action of du* € C/(V) on ad—splnorw € S, c(dut) =
c=(du) P =7 ¢ =e% 9,

Q>

7 ()’ (u) + 7 (upy* (u) = 297 (u) L

Canon. spin Cartan d—con.: §V = L6 — 1 T .98 sur,

Definition: The Dirac d—operator (h—operator) on a spin N—anholonomic
manifold (V,S, J) (h—spin manifold (hV, 'S, "J), or v—spin manifold
(vV, VS, YJ))is

D=—i(€o sV)=("D=-i("co V), "D=—i("Co §V))

Dirac d—operators are called almost Kahler and denoted 4D = ( 2D, YD ) if
defined for the Cartan/ normal d—connection.
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Nonholonomic Spinors, Dirac Operators and Ricci Flows Noncomutative geometry and Ricci flows

page 26: The spectral action/functional paradigm:

Standard models, particles & "extracted” from noncommut. geometry,

spectral triple (A, H, D), postulating actionTr f(D?/A?)+ < W|D|W > . Tr is the trace in operator
algebra, WV is a spinor, all defined for a Hilbert space #, A is a cutoff scale and f is a positive
function. Spectral action depends on spectrum of Dirac operator D on a space defined by a
noncommutative associative algebra A = C°(V) @ PA.

Spectral geometry of A : product rule H = L2(V,S) ® PH, Hilbert sp. L? spinors L2(V, S),
Hilbert space of quarks and leptons P# fixing the choice of the Dirac operator ”D & action P.A
for fund. particles. Dirac operator D = YD ® 1+ vs ® P D, Dirac operator VD of the Levi—Civita
spin connection on V. Spectral functionals contain in commutative limit the Perelman’s
functionals for Ricci flows.

Scal prod on I°°(8), < 9, ¢ >= [, (P|)|vgl, V : vg = \/det|g| det|h] dx...dx" dy™!...dy"tm
Hilbert d—space by completing *°(S), sc. pr.
N = Lp(V,8) = [ "H = La(WV, "S), YH = Lo(WV, VS)]

A canonical (almost Kahler) spectral d-triple ( VA, N7, 4D) for a d-algebra N.A is defined by
1) a Hiloert d-space N7, 2) a representation of N A in the algebra NB( N#{) of d—operators
bounded on N, 3) by a self-adjoint d—operator N, of compact resolution,(an operator D is of
compact resolution if for any A € sp(D) the operator (D — AI)~" is compact) such that

[VH,a] € NB(NH)foranyaec NA.
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page 27: Spectral triples and distance in d—spinor spaces

Theorem: (Distance) Let (¥ A, V¥, oD, J, 1enl) @ noncom. geometry, irreducible for

NA = C>°(V), where V is a compact, connected and oriented manifold without
boundaries, of spectral dimension dimV = n+ n. There are satisfied:
@ 3 a unique d—metric g( 9]]3)) = ("g, vg), "nonlinear geodes." dist. on V,
d(u, te) = SUPsccv) {f(u1,u2)/ | [ oD, f] ||< 1},V smooth f € C(V).

@ An almost Kéhler model of N—anholonomic manifold V is a spin N—anholonomic
space, operators oD’ satisfying the condition g( eD’) = (QD) (and canonically
derived almost Kahler spaces with “4( 4D') = “0( 4D)) define an union of affine
spaces identified by the d—spinor structures on V.

© The functional S( ¢D) = [ |¢D|~"~"*2 defines a quadratic d—form with

(n+ n)-splitting for every affine space which is minimal for oD = gﬁ as the
canonical almost K&hler Dirac d—operator corresponding to the d—spin structure
with the minimum proportional to the Einstein—Hilbert action for the canonical
Cartan/ normal d—connection with d—scalar curv. 3R,

S(e ﬁ) —o2t L SRV gV vhax!.dx" sy TSy,
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page 28: Spectral nonholonomic flows and Perelman functionals

Family of generalized d—operators

oD (x) = —[% 077 () "ea(x) "es(x) — “es(x) "eal(x)] + AY(x) "eu(x) + B(x)]

X € [0, x0), matrices A”(x) and B(x )determlned by oD induced by ¢D; for the

Cartan/ normal d—connection, 9D2 A” and B. We introduce functionals F and W
depending on ,

Fo= T ['f00CPDP0/N)] 2 Y M) (D))
k>0
W= Pwiiw,
for W = T [ 00 *DX)/AN)] = 3 () “a( UDA0)/AP),
k>0

cutting parameter A? for both cases e = 2, 3. Functions °f, with label b taking values
1,2, 3. Coefficients computed as "N-adapted" Seeley — de Witt coefficients.
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page 29: Main Theorems on "noncommutative" Perelman functionals

Theorem: For the scaling factor '¢ = —f/2, the first spectral functional
F = PF("0, 4D, ) can be approximated as the first Perelman functional

e

2e’ £o°B(Lenf “esf — “esf Fenf)].

P]-':/éV e[ "R(e™" “0,) +
A"

Theorem: 2d spectr.funct. W = PW( 16, 4D, f) is approx. as 2d Perelman funct.
Pw = /wu x [x(2R(e™" "0,.) + gef L0°P (te.flesf — Lesf fenf)) +f— 2],
\'

for scaling 2¢ = —f/2in 2W, ¢ = (In|f — 2| — £)/2 in 3W.

Conclusion: The Ricci flow theory of almost Kahler — Finsler/ -Lagrange / -Einstein
spaces can be extracted from noncommutative geometry.
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page 30: Ricci Solitons & DQ

Aim: Perform DQ using N-adapted frames (for Fedosov operators), the
Cartan d—connection and distortions with Neijenhuis tensor, — star product.

v

Fa, =88 8rs +éve, (®s) I"=r+2
(v)e, & =&Y (u)e”, new sets N = {N'} when To, = (1/4)G. .

"Formal power" series and Wick product

C>(V)[[4]] of "formal series" on ¢ with coefficients from C>(V) on a Poisson
(V,{:,-}), where the bracket {-,-}. Operator

"fx2f=>",C('f, 2N L,
r=0

,C,r >0, are bilinear operators with oC( 'f, 2f) = 'f2f and
1C( ', 2f) — 1C(2f, 'f) = i{ 'f, 2f}; i = —1; an associative algebra
structure on C>°(V)[[¢]] with a /-linear and ¢—addical continuous star product.
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page 31

Local coordinates (u, z) = (u®, z%), on TV; elements as series

a(v,z)= Y a ()2t ¢, is a multi-index{a}
r=0,{a}|>0

On T,V, a formal Wick product with A®# := o8 — j §of,

2
aob (z):=exp <i€ Jo#__9

—— | a(2)b(z =
) 82”82[6]) ( ) ( [1]) |Z Z[1]

The d—connection extended on space W ® A to operator

Dawe) = (éa(a) — P, Zéa(a)> ® (8% A €) +a® d,

where “8,, is a similar to &, but depend on z—variables. This operator is a

N—adapted deg,—graded derivation of the d—algebra (VV A, o).
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page 32: Fedosov N—-adapted operators

Definition: The Fedosov N—adapted operators are

X)L e A 2 10y _ mz é.(a), ifp+qg>0,
o(a) = € N “é4(a)and o (a) { 0.ifp=q=0

a € W ® A is homogeneous w.r.t. the grading deg,(a) = p,deg,(a) = q

Theorem: Any d-metric/ equivalent symplectic structure, g(-,-) := g(J-, ), define a
flat canonical Fedosov d—connection D : — § + D — tadwick(r); D? = 0;3 a unique
elementr e WA, deg,(r)=1,3""r=0,solving ér =T +R+Dr—iror.
Recursively,

~

9 = A0 =5"T,r TR+ Dr® - ér(z) o r?),

L
(k43 (Dr (k+2) Z (+2) o r(/+2 k>,
1=0

a®) is the Deg—homogeneous component of degree k of a e W ® A.
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page 33: Main theorems for Fedosov—Ricci solitons

Analogs of torsion and curvature operators of D on W ® A,

¥ Z7 s o x « Z72% « o, —
T = O Tos(u) & n &’ =y 0, Rpap(u) 8 N &7

Properties: [D, 3] = fadwick(T) and D? = — ! adwiok(R).
The bracket [-, ] is the deg,—graded commutator of endomorphisms of We Aand
adwick is defined via the deg,—graded commutator in (W QA, o).

Theorem 1: A star—product for the almost K&hler model
of a nonholonomic Ricci soliton is defined on C*°(V)[[¢]] by
'fx 2f = o(r( 'F)) o o(7( *f)),

where the projection o : Wi, — C°(V)[[4]] onto the part of deg,—degree zero is a
bijection and the inverse map 7 : C>(V)[[¢]] — W can be calculated recursively
w.r..t the total degree Deg,r(f )(0 =f,

T(f)(k+1) — 5—1 (DT( ) i Z adW/ck( I+2))(T(f)(k—l))) , for k > 0.

SV [V YT TV (B V(O T 2 (o0 ETIIEV N oncommutative Algebroid Ricci Flows, Modif May 30, 2013 331/35



Ricci Solitons and Deformation Quantization
page 34:

f¢ is the Hamiltonian vector field for a function f € C°°(V) on (V, #). Antisymmetric

—C('f, 2f) = % (C('f, 2f) — C( ?f, 'f)) of bilinear C( 'f, 2f).

A star—product is normalized if 1C( 'f, 2f) = J{ 'f, 2f}, {-,-} is the Poisson bracket defined by
d. For a normalized , the bilinear 5 Cis a de Rham—Chevalley 2—cocycle 3 a unique closed
2—form 3, ,C('f, 2f) = } x(fig, Re)v ', 2f € C=(V).

Consider the class ¢ of a normalized star—product * as the equivalence class ¢y () =[],
computed as a unique 2—form,

T

iv ’ N N 1v ’
r=—gdn R7, s 8 A& —iX forX=dj, ji= g9 158

The h- and v—projections AN = 1 (ldj, — iJy) and vl = 3 (Idy, — idy).

The final step is to compute the closed Chern—-Weyl form

X = T [(hn, vy R (AT, vn)T] = —iTr [(hN,v)R] = —1J 'R, & A &P,
The canonical class is ¢ := [¥] — proof of

Theorem 2: The zero—degree cohomology coefficient cy(x) for the almost Kahler

model of a nonholonomic Ricci soliton is ¢y (x) = —(1/2) &.
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slide 35: Conclusions & Perspectives

Key results

@ (Non) Commutative Ricci flow evolution theory for almost Kahler models of Lie algebroids
endowed with canonical N—connection structure

@ Decoupling property of the Ricci soliton egs for nonholonomic Lie algebroids and exact
solutions in Modified Gravity

@ Deformation quantization of almost Kéhler geometries and physical models

Directions for future

@ Supersymmetric Ricci flows, quantum groups and deformation / geometric quantization of
Lie algebroids

@ Noncommutative Ricci flows on Lie algebroids, Dirac operators, spectral triples,
generalized symplectic structures, quantum group models

@ Modified gravity theories and algebroid Ricci solitions

@ Exact solutions with generalized Lie algebroid symmetries (cosmological scenarios, brane
models with generalized symmetries)

THANKS!
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