Non-commutative Algebroid Ricci Flows, Modified Gravity & Deformation Quantization

Sergiu I. Vacaru

Rector's Office University Al. I. Cuza (UAIC), Iaşi, Romania

Seminar at Department of Theoretical Physics, NIPNE

Bucureşti, Magurele, Romania May 30, 2013

page 2: Motivation and Goals

Outline some directions of recent and future activity **Aim:** establish collaborations on mathematical and theoretical physics, geometry and physics

Four Directions

- nonholonomic geometric flows evolution: (non) commutative spaces, Lie algebroids with N-connections, almost symplectic structures
- (non) commutative geometry, almost Kähler and Clifford structures, Dirac operators and effective Einstein and Lagrange–Finsler spaces
- Ricci solitons in non-Riemanian geometry, modified gravity and PDEs decoupling and off-diagonal solutions
- geometric methods in quantization of models with nonholonomic nonlinear dynamics and anisotropic field interactions

page 3: Table of Content

- Almost Kähler Models for Einstein & Lagrange–Finsler Spaces
 - Preliminaries: nonholonomic manifolds and bundles
 - Canonical almost Kähler variables, semi–Riemannian & LF
 - almost Kähler Lie Algebroids and N-connections
 - Distinguished Lie algebroids and prolongations
 - Canonical structures on Lie d–algebroids
 - Almost Kähler Einstein and Lagrange Lie d–algebroids
 - almost Kähler Ricci Evolution and Lie Algebroids
 - Perelman's functionals in almost Kähler variables and K^EE
 - N-adapted metric and almost symplectic evolution eqs
 - Geometric thermodynamics of almost Kähler d–algebroids
- 4 almost Kähler Solitons with Lie Algebroid Symmetries
 - Preliminaries on Lie d–algebroid solitons
 - Generalized Einstein eqs encoding Lie d–algebroid structures
 - Nonholonomic Spinors, Dirac Operators and Ricci Flows
 - Nonholonomic Clifford structurs
 - Noncomutative geometry and Ricci flows
 - Ricci Solitons and Deformation Quantization
 - Conclusions & Perspectives

slide 4: Almost Kähler Models for Einstein & Lagrange-Finsler Spaces

Preliminaries: nonholonomic manifolds and bundles

Nonholonomic manifold: (V, \mathcal{N}) , [dim V = n + m with finite $n, m \ge 2$]

$$\mathbf{N}: TV = hTV \oplus vTV$$

$$V = (V, N, g), TV, or TM = (TM, N, L),$$
 example 2+2+2+.... splitting

N-connection: C. Ehresmann – 1955. E. Cartan – 1935

Lagrange space (TM, L), J. Kern - 1974

regular Lagrangian $\mathcal{L} = L(x, y)$, $\tilde{h}_{ab} = \frac{1}{2} \frac{\partial^2 \mathcal{L}}{\partial v^a \partial v^b}$, $\det |\tilde{h}_{ab}| \neq 0$

Finsler geometry:
$$L = F^2(x, y), F(x, \xi y) = \xi F(x, y), \xi > 0$$

Theorem:
$$\frac{d}{d\tau} \frac{\partial \mathcal{L}}{\partial y^i} - \frac{\partial \mathcal{L}}{\partial x^i} = 0$$
 equivalent $\frac{dx^a}{d\tau} + 2\tilde{G}^a(x,y) = 0$

$$y^{i} = dx^{i}/d\tau$$
, for $x^{i}(\tau)$, $S = y^{i} \frac{\partial \mathcal{L}}{\partial x^{i}} - 2\tilde{G}^{a} \frac{\partial}{\partial y^{a}}$

when
$$\tilde{G}^a = \frac{1}{4} \tilde{h}^{a \ n+i} (\frac{\partial^2 \mathcal{L}}{\partial y^{n+i} \partial x^k} y^{n+k} - \frac{\partial \mathcal{L}}{\partial x^i})$$

N–coefficients:
$$\tilde{N}_i^a = \frac{\partial \tilde{G}^a}{\partial y^{n+i}}$$
, $\mathbf{N} = N_i^a(x,y) dx^i \otimes \partial/\partial y^a$

slide 5:

Sasaki lift and canonical d-connections

Corollary: Sasaki lift from M to TM:

prescribed $\mathcal{L} \to \tilde{\mathbf{q}} = h\tilde{\mathbf{q}} + v\tilde{\mathbf{q}}$, $(\mathbf{q}, \mathbf{N}) \sim (\tilde{\mathbf{q}}, \tilde{\mathbf{N}}[\mathcal{L}])$

Def. d-connection $\mathbf{D} = (hD; vD)$, metric compatible if $\mathbf{Dq} = 0$

Def. Ricci, **Ric.** and Einstein, **E.** of **D**; d-tens, d-vect: $\mathbf{Y} = hY + vY$

Theor.
$$\widehat{\mathbf{D}} = \nabla + \widehat{\mathbf{Z}}$$
 and $\widetilde{\mathbf{D}} = \nabla + \widetilde{\mathbf{Z}}$

 $\begin{array}{cccc} \nabla: & \nabla \boldsymbol{g} = 0; \ ^{\nabla} \mathcal{T}^{\alpha} = 0, & \text{Levi--Civita connection} \\ \boldsymbol{g} = \tilde{\boldsymbol{g}} \rightarrow & \widehat{\boldsymbol{D}}: & \widehat{\boldsymbol{D}} \boldsymbol{g} = 0; \ h \widehat{\mathcal{T}}^{\alpha} = 0, v \widehat{\mathcal{T}}^{\alpha} = 0, & \text{canonical d--connection} \end{array}$

 $\tilde{\mathbf{D}}$: $\tilde{\mathbf{D}}\mathbf{q} = 0$; $h\tilde{\mathcal{T}}^{\alpha} = 0$, $v\tilde{\mathcal{T}}^{\alpha} = 0$. Cartan d-connection

$$\mathbf{g} = \{\mathbf{g}_{\alpha'\beta'}\} \rightarrow \tilde{\mathbf{g}}_{\alpha\beta} = [\tilde{g}_{ij}, \tilde{h}_{ab}], \tilde{\mathbf{e}}_{\alpha} = e_{\alpha'}^{\alpha'} e_{\alpha'} \text{ and } \mathbf{g}_{\alpha'\beta'} e_{\alpha'}^{\alpha'} e_{\beta'}^{\beta'} = \tilde{\mathbf{g}}_{\alpha\beta}$$

 $\tilde{\mathbf{q}} = \tilde{g}_{ii} dx^i \otimes dx^j + \tilde{h}_{ab} \tilde{\mathbf{e}}^a \otimes \tilde{\mathbf{e}}^b, \ \tilde{g}_{ii} = \tilde{h}_{n+i} \ n+i,$

 $\tilde{\mathbf{e}}_{\alpha} = (\tilde{\mathbf{e}}_i = \partial_i - \tilde{N}_i^a \partial_a, e_a = \partial_a), \tilde{\mathbf{e}}^{\alpha} = (e^i = dx^i, \tilde{\mathbf{e}}^a = dy^a + \tilde{N}_i^a dx^i)$

slide 6: Canonical almost Kähler variables, semi-Riemannian & LF

Canon alm complex:
$$\tilde{\mathbf{J}}(\tilde{\mathbf{e}}_i) = -e_{2+i} \& \tilde{\mathbf{J}}(e_{2+i}) = \tilde{\mathbf{e}}_i, \ \tilde{\mathbf{J}} \circ \tilde{\mathbf{J}} = -\mathbb{I}$$

Neijenhuis: $\mathbf{J} \cdot (\mathbf{X}, \mathbf{Y}) := -[\mathbf{X}, \mathbf{Y}] + [\mathbf{J}\mathbf{X}, \mathbf{J}\mathbf{Y}] - \mathbf{J}[\mathbf{J}\mathbf{X}, \mathbf{Y}] - \mathbf{J}[\mathbf{X}, \mathbf{J}\mathbf{Y}]$

Prop.-Def. \forall (q, J) \rightarrow almost sympl struct θ (X, Y) := q(JX, Y)

- almost Hermitian model of (V, q, N): $\mathsf{H}^{n+n} = (\mathsf{V}, \theta(\cdot, \cdot) := \mathsf{q}(\mathsf{J}\cdot, \cdot), \mathsf{J})$
- \mathbf{H}^{n+n} is almost Kähler, \mathbf{K}^{n+n} , if and only if $d\theta = 0$

Theor.: The Cartan d–connection $\hat{\mathbf{D}}$ is a unique almost symplectic d-connection: $\tilde{\mathbf{D}}\tilde{\theta}=0$ and $\tilde{\mathbf{D}}\tilde{\mathbf{J}}=0$

Theor.: Einstein manifold $Ric = \lambda \mathbf{q}$ canonical variables, $\hat{\mathbf{R}}i\mathbf{c} = \lambda \mathbf{q}$ and $\hat{\mathbf{Z}} = \mathbf{0}$

Cartan type almost Kähler variables, $\mathbf{R}ic = \lambda \mathbf{q}$ and $\mathbf{Z} = \mathbf{0}$

slide 7: almost Kähler Lie Algebroids and N-connections

Def.: d–algebroid: $\mathcal{E} = (\mathbf{E}, |\cdot, \cdot|, \rho)$ over a manifold M:

- 1) $\mathbf{N}: TE = hE \oplus vE$
- 2) Lie aglebroid structure: 2a) a real *vector bundle* $\tau : \mathbf{E} \to M$;
- 2b) a *Lie bracket* $|\cdot,\cdot|$ on $Sec(\tau)$ of map τ
- 2c) anchor map $\rho: \mathbf{E} \to TM, \, \rho: Sec(\tau) \to \mathcal{X}(M)$ of $C^{\infty}(M)$ -modules

$$\lfloor X, fY \rfloor = f \lfloor X, Y \rfloor + \rho(X)(f)Y, \ \forall X, Y \in Sec(\tau) \ \text{and} \ f \in C^{\infty}(M)$$

 ρ equivalent to a homomorphism between the Lie algebras $(Sec(\tau), |\cdot, \cdot|)$ and $(\mathcal{X}(M), |\cdot, \cdot|)$

Coefficient form:
$$\rho(e_a) = \rho_a^i(x)\mathbf{e}_i$$
 and $\lfloor e_a, e_b \rfloor = \mathbf{C}_{ab}^f(x)e_f$, $\rho_a^i \mathbf{e}_i \rho_b^j - \rho_b^i \mathbf{e}_i \rho_a^j = \rho_f^j C_{ab}^f$ and $\sum_{\mbox{cycl }(a,b,f)} \left(\rho_a^i \partial_i C_{be}^f + C_{be}^d C_{ad}^f \right) = 0$

Example: Nonholonomic Lie algebroids: $\mathbf{E} = T\mathbf{V}$, for $\mathbf{V} = (V, \mathbf{N})$

slide 8: N-adapted prolongation Lie algebroid

Lie d-algebroid $\mathcal{E} = (\mathbf{E}, |\cdot, \cdot|, \rho)$ and fibration $\pi : \mathbf{P} \to M$ over the same manifold M, $u^{\underline{\alpha}} = (x^i, v^A) \in P$, particular $\mathbf{P} = \mathbf{E}$ anchor map $\rho : \mathbf{E} \to \mathbf{TM}$ and the tangent map $\mathbf{T}\pi : \mathbf{TP} \to \mathbf{TM}$, subset

$$\mathcal{T}_{s}^{E}\mathbf{P}:=\{(b,v)\in\mathbf{E}_{x}\times\mathcal{T}_{x}\mathbf{P};\rho(b)=\mathcal{T}_{p}\pi(v);p\in\mathbf{P}_{x},\pi(p)=x\in\mathit{M}\}$$

Theor—Definition.

The the prolongation $\mathcal{T}^{\mathsf{E}}\mathsf{P} := \bigcup_{s \in S} \mathcal{T}_{s}^{\mathsf{E}}\mathsf{P}$ of a nonholonomic **E** over π is another Lie d-algebroid

$$\overline{z} = z^{a} \mathcal{X}_{a} + v^{A} \mathcal{V}_{A} \in \mathcal{T}^{\mathsf{E}} \mathsf{P} \ \rho^{\pi}(Z) = \rho_{a}^{i} Z^{a} \mathbf{e}_{i} + V^{A} \partial_{A}$$

Lie brackets $[\mathcal{X}_{a}, \mathcal{X}_{b}]^{\pi} = C_{ab}^{f} \mathcal{X}_{f}, \ [\mathcal{X}_{a}, \mathcal{V}_{B}]^{\pi} = 0, \ [\mathcal{V}_{A}, \mathcal{V}_{B}]^{\pi} = 0$

 $(\mathcal{X}^a, \mathcal{V}^B)$ the dual bases to $(\mathcal{X}_a, \mathcal{V}_A)$ differential calculus for N-adapted differential forms using $dx^i = \rho_a^i \mathcal{X}^a$, for $d\mathcal{X}^f = -\frac{1}{2} C_{ab}^f \mathcal{X}^a \wedge \mathcal{X}^b$, and $dy^A = \mathcal{V}^A$, for $d\mathcal{V}^A = 0$

slide 9: N-connections on prolongation Lie algebroids

Def. a
$$h$$
- v -splitting $\mathcal{N}: \mathcal{T}^{\mathsf{E}}\mathsf{P} = h\mathcal{T}^{\mathsf{E}}\mathsf{P} \oplus v\mathcal{T}^{\mathsf{E}}\mathsf{P}$
Locally $\mathsf{N} = N_i^A(x^k, y^B)dx^i \otimes \partial_A$ and $\mathcal{N} = \mathcal{N}_a^A\mathcal{X}^a \otimes \mathcal{V}_A$.

structures on TP and T^EP are compatible if $\mathcal{N}_a^A = N_i^A \rho_a^i$. Using \mathcal{N}_a^A , generate sections $\delta_a := \mathcal{X}_a - \mathcal{N}_a^A \mathcal{V}_A$ as local basis of $h \mathcal{T}^E \mathbf{P}$.

Corollary: \mathcal{N}_{a}^{A} on $\mathcal{T}^{E}\mathbf{P}$ determines N-adapted frames

$$\mathbf{e}_{\overline{\alpha}} := \{\delta_{\mathbf{a}} = \mathcal{X}_{\mathbf{a}} - \mathcal{N}_{\mathbf{a}}^{C} \mathcal{V}_{C}, \mathcal{V}_{\mathbf{A}}\}, \mathbf{e}^{\overline{\beta}} := \{\mathcal{X}^{\mathbf{a}}, \delta^{\mathbf{B}} = \mathcal{V}^{\mathbf{B}} + \mathcal{N}_{\mathbf{c}}^{\mathbf{B}} \mathcal{X}^{\mathbf{c}}\}$$

Neigenhuis tensor hN of the operator h,

$$\begin{array}{rcl}
{}^{h}N(\cdot,\cdot) & = & \lfloor h\cdot,h\cdot\rfloor^{\pi}-h\lfloor h\cdot,\cdot\rfloor^{\pi}-h\lfloor\cdot,h\cdot\rfloor^{\pi}+h^{2}\lfloor h\cdot,h\cdot\rfloor^{\pi} \\
 & = & -\frac{1}{2}\Omega^{C}_{ab}\mathcal{X}^{a}\wedge\mathcal{X}^{b}\otimes\mathcal{V}_{C}, \\
\Omega^{C}_{ab} & = & \delta_{b}\mathcal{N}^{C}_{a}-\delta_{a}\mathcal{N}^{C}_{b}+C^{f}_{ab}\mathcal{N}^{C}_{f}
\end{array}$$

slide 10: Canonical structures on Lie d-algebroids

Def. d–connection, $\mathcal{D} = (h\mathcal{D}, v\mathcal{D})$, on $\mathcal{T}^{\mathsf{E}}\mathbf{P}$ is a linear connection preserving under parallelism h-v-splitting

Def. torsion and curvature

$$\begin{split} \mathcal{T}(\overline{x},\overline{y}) &:= \mathcal{D}_{\overline{x}}\overline{y} - \mathcal{D}_{\overline{y}}\overline{x} + \lfloor \overline{x},\overline{y} \rfloor^{\pi} \ \& \ \mathcal{R}(\overline{x},\overline{y})\overline{z} := \left(\mathcal{D}_{\overline{x}} \ \mathcal{D}_{\overline{y}} - \ \mathcal{D}_{\overline{y}}\mathcal{D}_{\overline{x}} - \mathcal{D}_{\lfloor \overline{x},\overline{y} \rfloor^{\pi}}\right)\overline{z} \\ \text{sections } \overline{x},\overline{y},\overline{z} \ \text{ of } \mathcal{T}^{E}\mathbf{P}, \ \overline{z} = z^{\overline{\alpha}}\mathbf{e}_{\overline{\alpha}} = z^{a}\delta_{a} + z^{A}\mathcal{V}_{A}, \text{ or } \overline{z} = h\overline{z} + v\overline{z}. \\ \text{absolute different for N-adapted } \mathbf{e}_{\overline{\alpha}} := \{\delta_{a},\mathcal{V}_{A}\} \text{ and } \mathbf{e}^{\overline{\beta}} := \{\mathcal{X}^{\alpha},\delta^{B}\} \\ \text{associating to } \mathcal{D} \text{ a d-connection 1-form } \Gamma^{\overline{\gamma}}_{\overline{\alpha}} := \Gamma^{\overline{\gamma}}_{\overline{\alpha}\overline{\beta}}\mathbf{e}^{\overline{\beta}} \\ \text{N-adapted coefficients } \mathcal{T} = \{\mathbf{T}^{\overline{\alpha}}_{\overline{\beta}\overline{\gamma}}\} \text{ and } \mathcal{R} = \{\mathbf{R}^{\overline{\alpha}}_{\overline{\beta}\overline{\gamma}\overline{\delta}}\} \end{split}$$

Prop-Definition. metric structure as a nondegenerate symmetric second rank tensor $\overline{\mathbf{g}} = \{ \mathbf{g}_{\overline{\alpha}\overline{\beta}} \} = \overline{\mathbf{g}} = h \mathbf{g} \oplus v \mathbf{g}$

metric compatible data $(\overline{\mathbf{g}}, \mathcal{D})$, $\mathcal{Q} = \mathcal{D}\overline{\mathbf{g}} = 0$ for h-/ v-components.

4 D > 4 B > 4 E > 4 E > 9 Q P

slide 11: Canonical d-connection and distortions

On $\mathcal{T}^{\mathsf{E}}\mathsf{P},\,\mathsf{g}_{\overline{\wedge}\overline{\beta}} o \mathsf{the}$ standard torsionless Levi–Civita connection ∇ (which is not N-adapted)

Theor. \exists canonical d–connection $\widehat{\mathcal{D}} = h\widehat{\mathcal{D}} + v\widehat{\mathcal{D}}$ completely defined by data $(\mathcal{N}, \mathbf{g}_{\overline{\alpha}\overline{\beta}})$ for which $\widehat{\mathcal{D}}\overline{\mathbf{g}} = 0$ and zero h- and v-torsions of \widehat{T} : $\widehat{T}_{hf}^a = C_{hf}^a$ and $\widehat{T}_{RC}^A = 0$.

Remarks:

- 1) There is a canonical distortion relation $\widehat{\mathcal{D}} = \overline{\nabla} + \widehat{\mathcal{Z}}$
- 2) $h\widehat{\mathcal{T}}^{\alpha}=0$ for $\widehat{\mathbf{D}}$ on **TM** but $h\widehat{\mathcal{T}}^{\alpha}\neq0$ for $\widehat{\mathcal{D}}$ on $\mathcal{T}^{\mathbf{E}}\mathbf{P}$, $\widehat{\mathcal{T}}^{a}_{bf}=C^{a}_{bf}$

Nonholonomic deformations:

$${}^c\widehat{\mathcal{D}}:=
abla+{}^c\widehat{\mathcal{Z}}:\ h{}^c\widehat{\mathcal{T}}^lpha=0\ ext{and}\ v{}^c\widehat{\mathcal{T}}^lpha=0.$$

slide 12: Canonical N-connection and almost symplectic structures

Theor. $\forall \mathcal{L} \in C^{\infty}(\mathbf{E})$ a canonical $\widetilde{\mathcal{N}} = \{\widetilde{\mathcal{N}}_a^f = -\frac{1}{2}(\partial_a \varphi^f + y^b C_{ba}^f)\}$ determined by semi-spray configurations encoding the solutions of the Euler-Lagrange equations

Prop.
$$\forall \ \overline{\mathbf{g}} = h\tilde{\mathbf{g}} \oplus v\tilde{\mathbf{g}}, \ \widetilde{\mathbf{g}} := \widetilde{\mathbf{g}}_{\overline{\alpha}\overline{\beta}}\mathbf{e}^{\overline{\beta}} \otimes \mathbf{e}^{\overline{\beta}} = \widetilde{g}_{ab} \ \mathcal{X}^a \otimes \mathcal{X}^b + \ \widetilde{g}_{ab} \ \widetilde{\delta}^a \otimes \widetilde{\delta}^b$$

$$\widetilde{\mathbf{e}}_{\overline{\alpha}} := \{\widetilde{\delta}_a = \mathcal{X}_a - \widetilde{\mathcal{N}}_a^f \mathcal{V}_f, \mathcal{V}_b\} \text{ and } \widetilde{\mathbf{e}}^{\overline{\beta}} := \{\mathcal{X}^a, \widetilde{\delta}^b = \mathcal{V}^b + \widetilde{\mathcal{N}}_f^b \mathcal{X}^f\}$$

$$\overline{\mathbf{g}} = \{\overline{\mathbf{g}}_{\overline{\alpha}'\overline{\beta}'}\}, \mathbf{e}_{\overline{\gamma}'} = \mathbf{e}^{\overline{\gamma}}_{\overline{\gamma}'} \mathbf{e}_{\overline{\gamma}} \text{ when } \overline{\mathbf{g}}_{\overline{\alpha}'\overline{\beta}'} = \mathbf{e}^{\overline{\alpha}}_{\overline{\alpha}'} \mathbf{e}^{\overline{\beta}} \widetilde{\mathbf{g}}_{\overline{\alpha}\overline{\beta}}$$

Riemann-Lagrange almost symplectic structures

Prop.–**Def.** $\forall \mathcal{L} \to \widetilde{\mathcal{N}}$ canonical almost complex structure on $\mathcal{T}^{\mathsf{E}} \mathsf{E}$ following formulas $\widetilde{\mathcal{J}}(\widetilde{\mathbf{e}}_a) = -\mathcal{V}_{m+a}$ and $\widetilde{\mathcal{J}}(\mathcal{V}_{m+a}) = \widetilde{\mathbf{e}}_a, \widetilde{\mathcal{J}} \circ \widetilde{\mathcal{J}} = -\mathbb{I}$ $\text{d-tensor}\ \ \widetilde{\mathcal{J}} = \widetilde{\mathcal{J}}_{\overline{\alpha}}^{\overline{\alpha}} \widetilde{\mathbf{e}}_{\overline{\alpha}} \otimes \widetilde{\mathbf{e}}^{\overline{\alpha}} = -\mathcal{V}_{m+a} \otimes \mathcal{X}^a + \widetilde{\mathbf{e}}_a \otimes \widetilde{\delta}^a, \ \widetilde{\mathcal{J}}_{\overline{\beta}}^{\overline{\alpha}} = \mathbf{e}_{\overline{\alpha}'}^{\overline{\alpha}} \mathbf{e}_{\overline{\beta}'}^{\overline{\beta}'} \widetilde{\mathcal{J}}_{\overline{\beta}'}^{\overline{\alpha}'}.$ Nijenhuis ${}^{\mathcal{J}}\Omega(\overline{x},\overline{y}) := -[\overline{x},\overline{y}] + [\mathcal{J}\overline{x},\mathcal{J}\overline{y}] - \mathcal{J}[\mathcal{J}\overline{x},\overline{y}] - \mathcal{J}[\overline{x},\mathcal{J}\overline{y}]$ for any sections \overline{x} , \overline{y} of $\mathcal{T}^{\mathbf{E}}\mathbf{E}$.

4 D > 4 D > 4 D > 4 D >

slide 13: Definition of prolongation almost Kähler d-algebroids

almost Hermitian and Kähler d-algebroids

- a) is defined by a triple $\mathcal{H}^{\mathsf{E}}\mathsf{E} = (\mathcal{T}^{\mathsf{E}}\mathsf{E}, \theta, \mathcal{J})$, where $\theta(\overline{x}, \overline{y}) := \mathsf{q}(\mathcal{J}\overline{x}, \overline{y})$
- b) A prolong Lie d-algebr $\mathcal{H}^{E}E$ is $\mathcal{K}^{E}E$, if and only if $d\theta = 0$

For effective regular Lagrange configurations,

Theor. Having chosen \mathcal{L} , model equivalently a $\mathcal{T}^{\mathsf{E}}\mathsf{E}$ as a $\mathcal{K}^{\mathsf{E}}\mathsf{E}$.

Proof. For
$$(\overline{\mathbf{g}} = \widetilde{\mathbf{g}}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{J}})$$
, $\widetilde{\theta}(\overline{x}, \overline{y}) := \widetilde{\mathbf{g}}(\mathcal{J}\overline{x}, \overline{y})$ sections $\overline{x}, \overline{y}$ of $\mathcal{T}^{\mathbf{E}}\mathbf{E}$, N-adapted $\widetilde{\theta} = \widetilde{g}_{ab}\delta^a \wedge \mathcal{X}^b$, $\theta_{\overline{\alpha'}\overline{\beta'}} = e^{\overline{\alpha}}_{\overline{\alpha'}}e^{\overline{\beta}}_{\overline{\beta'}}\widetilde{\theta}_{\overline{\alpha}\overline{\beta}}$ Let $\widetilde{\omega} := \frac{1}{2} \frac{\partial \mathcal{L}}{\partial y^{\overline{m}+a}} \mathcal{X}^a \rightarrow \widetilde{\theta} = d\widetilde{\omega}$ and $d\widetilde{\theta} = dd\widetilde{\omega} = 0$

$$\tilde{\theta} = \frac{1}{2}\tilde{\theta}_{ab}(x^i, y^C)\mathcal{X}^a \wedge \mathcal{X}^b + \frac{1}{2}\tilde{\theta}_{AB}(x^i, y^C)\tilde{\delta}^A \wedge \tilde{\delta}^B$$

slide 14: The canonical almost symplectic d-connection

Def. A metric compatible almost symplectic d–connection on $\mathcal{H}^{\mathsf{E}}\mathsf{E}$ of $\mathcal{T}^{\mathsf{E}}\mathsf{E}$, ${}^{\theta}\mathcal{D}_{\overline{x}}\theta=0, \forall \text{ section } \overline{x} \text{ of } \mathcal{T}^{\mathsf{E}}\mathsf{E}$.

Lemma: fix ${}^{\circ}\mathcal{D}$ on $\mathcal{T}^{\mathsf{E}}\mathbf{E}$ and construct almost symplectic ${}^{\theta}\mathcal{D}$

Theor. On $\mathcal{T}^{\mathsf{E}}\mathsf{E}$, \exists unique normal d–connection

$${}^{n}\mathcal{D}=\{h\,{}^{n}\mathcal{D}=(\,{}^{n}_{h}\mathcal{D}_{a}=\widehat{\mathcal{D}}_{a},\,{}^{n}_{v}\mathcal{D}_{a}=\widehat{\mathcal{D}}_{a});\,v\,{}^{n}\mathcal{D}=(\,{}^{n}_{h}\mathcal{D}_{A}=\widehat{\mathcal{D}}_{A},\,{}^{n}_{v}\mathcal{D}_{A}=\widehat{\mathcal{D}}_{A})\}$$

$$\widehat{\mathcal{D}}_{a}\tilde{\mathbf{g}}_{bc}=0$$
 and $\widehat{\mathcal{D}}_{A}\tilde{\mathbf{g}}_{BC}=0$, completely defined by $\overline{\mathbf{g}}=\tilde{\mathbf{g}}$ and $\mathcal{L}(x,y)$

Theor. ${}^{n}\mathcal{D} = \widetilde{\mathcal{D}}$ defines a unique almost symplectic d–connection, $\widetilde{\mathcal{D}} \equiv {}^{\theta}\widetilde{\mathcal{D}}$, ${}^{\theta}\widetilde{\mathcal{D}}\widetilde{\theta}{=}0$ and $\widetilde{\mathbf{T}}_{cb}^{a}=\widetilde{\mathbf{T}}_{CB}^{A}=0$

$$\textbf{Concl.} \left[\overline{\textbf{g}}, \mathcal{N}, \widehat{\mathcal{D}} = \overline{\nabla} + \widehat{\mathcal{Z}} \right] \approx \left[\widetilde{\textbf{g}}, \mathcal{L}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{D}} \right] \approx \left[\widetilde{\theta}(\cdot, \cdot) := \widetilde{\textbf{g}}(\widetilde{\mathcal{J}} \cdot, \cdot), \ ^{\theta} \widetilde{\mathcal{D}} \right]$$

The Lie algebroid structure functions (ρ_a^i, C_{ab}^f) are encoded into nonholonomic distributions on $\mathcal{T}^{\mathsf{E}}\mathsf{E}$

slide 15: almost Kähler Einstein and Lagrange Lie d-algebroids

Corollary–Definition The Ricci tensor of \mathcal{D} on $\mathcal{T}^{\mathsf{E}}\mathbf{P}$ with $\overline{\mathbf{q}}$ is \mathcal{R} ic = $\{\mathbf{R}_{\overline{\alpha}\overline{\beta}} := \mathbf{R}^{\overline{\gamma}}_{\overline{\alpha}\overline{\beta}\overline{\alpha}}\}$

N-adapted coefficients for Riemannian d-tensor
$$\mathcal{R}^{\overline{\alpha}}_{\overline{\beta}} = \{\mathbf{R}^{\overline{\alpha}}_{\overline{\beta}\overline{\gamma}\overline{\delta}}\}$$
 $R_{\overline{\alpha}\overline{\beta}} = \{R_{ab} := R^c_{\ abc}, \ R_{aA} := -R^c_{\ acA}, \ R_{Aa} := R^B_{\ AaB}, \ R_{AB} := R^C_{\ ABC}\}$
The scalar curvature ${}^{s}\mathbf{R} := \mathbf{g}^{\overline{\alpha}\overline{\beta}}\mathbf{R}_{\overline{\alpha}\overline{\beta}} = \mathbf{g}^{ab}\mathbf{R}_{ab} + \mathbf{g}^{AB}\mathbf{R}_{AB}$.
the Einstein d-tensor $\mathbf{E}_{\overline{\alpha}\overline{\beta}} := \mathbf{R}_{\overline{\alpha}\overline{\beta}} - \frac{1}{2}\mathbf{g}_{\overline{\alpha}\overline{\beta}} {}^{s}\mathbf{R}$
on $\mathcal{T}^{\mathbf{E}}\mathbf{E}$, or $\mathcal{K}^{\mathbf{E}}\mathbf{E}$, respectively, for $\widehat{\mathcal{D}}$ and $\widetilde{\mathcal{D}} = {}^{\theta}\widetilde{\mathcal{D}}$.

Prescribing
$$(\mathcal{L}; \rho_a^i, C_{ab}^i), \widehat{\mathcal{R}}ic = \lambda \overline{\mathbf{g}}, \widehat{\mathcal{Z}} = 0$$

almost Kähler variables, $\widetilde{\mathcal{R}}ic = \lambda \mathbf{q}, \widetilde{\mathcal{Z}} = \mathbf{0}$

4 D > 4 B > 4 B > 4 B > 200

slide 16: almost Kähler – Ricci Evolution and Lie Algebroids

Perelman's functionals in almost Kähler variables and $\mathcal{K}^{\mathsf{E}}\mathsf{E}$

Models of non-Riemannian Ricci flow evolution:

- nonholonomic, Lagrange

 Finsler flows, nonsymmetric metrics
- noncommutative Ricci flows; almost K\u00e4hler and DQ flows
- fractional derivative and diffusion evolution
- Lagrange-Ricci flows on \mathcal{T}^{E} E: Flows for \mathcal{K}^{E} E

Remark: proofs for $[\overline{\mathbf{g}} \sim \widetilde{\mathbf{g}}, \mathcal{L}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{D}}] \approx [\widetilde{\theta}(\cdot, \cdot) := \widetilde{\mathbf{g}}(\widetilde{\mathcal{J}}\cdot, \cdot), \ ^{\theta}\widetilde{\mathcal{D}} = \overline{\nabla} + \widetilde{\mathcal{Z}}]$

Lemma: Perelman's functionals equivalently in canon. almost Kähler form

$$\begin{split} \widetilde{\mathcal{F}}(\widetilde{\mathbf{g}},\widetilde{\mathcal{D}},\widecheck{\mathbf{f}}) &= \int_{\overline{\mathcal{V}}} (\sqrt[s]{\widetilde{\mathbf{R}}} + |h\widetilde{\mathcal{D}}\widecheck{\mathbf{f}}|^2 + |v\widetilde{\mathcal{D}}\widecheck{\mathbf{f}}|)^2) e^{-\widecheck{\mathbf{f}}} dv, \\ \widetilde{\mathcal{W}}(\widetilde{\mathbf{g}},\widetilde{\mathcal{D}},\widecheck{\mathbf{f}},\widecheck{\mathbf{f}}) &= \int_{\overline{\mathcal{V}}} [\widecheck{\mathbf{f}}(\sqrt[s]{\widetilde{\mathbf{R}}} + |h\widetilde{\mathcal{D}}\widecheck{\mathbf{f}}| + |v\widetilde{\mathcal{D}}\widecheck{\mathbf{f}}|)^2 + \widecheck{\mathbf{f}} - 2m]\widecheck{\mu}dv \end{split}$$

slide 17: N-adapted metric and almost symplectic evolution eqs

Theorem: a) $\widehat{\mathcal{D}}$ preserving a symmetric metric structure $\widetilde{\mathbf{q}}$ on $\mathcal{T}^E \mathbf{E}$

$$\begin{split} &\frac{\partial \widetilde{\mathbf{g}}_{ab}}{\partial \chi} &= -(\widetilde{\mathbf{R}}_{ab} + \widetilde{\mathbf{Z}} i c_{ab}), \ \frac{\partial \widetilde{\mathbf{g}}_{AB}}{\partial \chi} = -(\widetilde{\mathbf{R}}_{AB} + \widetilde{\mathbf{Z}} i c_{AB}), \\ &\widetilde{\mathbf{R}}_{aA} &= -\widetilde{\mathbf{Z}} i c_{aA}, \ \widetilde{\mathbf{R}}_{Aa} = \widetilde{\mathbf{Z}} i c_{Aa}, \\ &\frac{\partial \widetilde{f}}{\partial \chi} &= -(\widetilde{\Delta} + {}^{Z} \widetilde{\Delta}) \widetilde{f} + \left| \left(\widetilde{\mathcal{D}} - \widetilde{\mathcal{Z}} \right) \widetilde{f} \right|^{2} - {}^{s} \widetilde{\mathbf{R}} - {}^{s} \widetilde{\mathbf{Z}}, \end{split}$$

$$\begin{split} & \frac{\partial}{\partial \chi} \mathcal{F}(\widetilde{\mathbf{g}}, \widetilde{\mathcal{D}}, \widetilde{\mathbf{f}}) = \int_{\overline{\mathcal{V}}} [|\widetilde{\mathbf{R}}_{ab} \ + \widetilde{\mathbf{Z}} \mathit{ic}_{ab} + (\widetilde{\mathcal{D}}_{a} - \widetilde{\mathcal{Z}}_{a})(\widetilde{\mathcal{D}}_{b} - \widetilde{\mathcal{Z}}_{b})\widetilde{\mathbf{f}}|^{2} \\ & + |\widetilde{\mathbf{R}}_{AB} \ + \widetilde{\mathbf{Z}} \mathit{ic}_{AB} + (\widetilde{\mathcal{D}}_{A} - \widetilde{\mathcal{Z}}_{A})(\widetilde{\mathcal{D}}_{B} - \widetilde{\mathcal{Z}}_{B})\widetilde{\mathbf{f}}|^{2}] e^{-\widetilde{\mathbf{f}}} dv, \ \int_{\overline{\mathcal{V}}} e^{-\widetilde{\mathbf{f}}} dv = const. \end{split}$$

b)
$$\tilde{\theta} = \tilde{g}_{ab}\delta^a \wedge \mathcal{X}^b$$
 and $\mathcal{K}^{\mathsf{E}}\mathsf{E}, \ \frac{\partial \tilde{\theta}_{ab}}{\partial \chi} = -\widetilde{\mathsf{R}}_{[ab]}, \ \frac{\partial \tilde{\theta}_{AB}}{\partial \chi} = -\widetilde{\mathsf{R}}_{[AB]}$

On
$$\mathcal{T}^{\textit{E}}\textbf{E}$$
 with $\widehat{\mathcal{D}},\ \frac{\partial \widetilde{\textbf{g}}_{\textit{ab}}}{\partial \chi} = -2\widehat{\textbf{R}}_{\textit{ab}}\ , \frac{\partial \widetilde{\textbf{g}}_{\textit{AB}}}{\partial \chi} = -2\widehat{\textbf{R}}_{\textit{AB}},$

$$\widehat{\boldsymbol{R}}_{aA}=0,\ \widehat{\boldsymbol{R}}_{Aa}=0,\ \frac{\partial \widehat{f}}{\partial \chi}=-\widehat{\Delta}\widehat{f}+\left|\widehat{\mathcal{D}}\widehat{f}\right|^2-\ ^{s}\widehat{\boldsymbol{R}}$$

slide 18: Geometric thermodynamics of almost Kähler d-algebroids

Theor. The Ricci flow evolution eqs with symmetric metrics and respective almost symplectic forms on $\mathcal{T}^{\mathsf{E}}\mathsf{E}$ and $\mathcal{K}^{\mathsf{E}}\mathsf{E}$ are solutions of egs with the Ricci d-tensor (previous slide) and

$$\frac{\partial \tilde{f}}{\partial \chi} = -(\widetilde{\Delta} + {}^{Z}\widetilde{\Delta})\tilde{f} + \left| (\widetilde{\mathcal{D}}_{a} - \widetilde{\mathcal{Z}}_{a})\tilde{f} \right|^{2} - {}^{s}\widetilde{\mathbf{R}} + \frac{2m}{\widehat{\tau}},$$

 $\frac{\partial \tilde{\tau}}{\partial x} = -1$, and conditions for the "minus entropy":

$$\begin{split} &\frac{\partial}{\partial \chi} \tilde{\mathcal{W}}(\widetilde{\mathbf{g}}(\chi), \widetilde{f}(\chi), \widetilde{\tau}(\chi)) = 2 \int_{\mathcal{V}} \widetilde{\tau}[|\widetilde{\mathbf{R}}_{\overline{\alpha}\overline{\beta}} - \widetilde{\mathbf{Z}} i c_{\overline{\alpha}\overline{\beta}} \\ &+ (\widetilde{\mathcal{D}}_{\overline{\alpha}} - \widetilde{\mathcal{Z}}_{\overline{\alpha}})(\widetilde{\mathcal{D}}_{\overline{\beta}} - \widetilde{\mathcal{Z}}_{\overline{\beta}})\widetilde{f} - \frac{1}{2\widetilde{\tau}} \widetilde{\mathbf{g}}_{\overline{\alpha}\overline{\beta}}|^2] (4\pi\widetilde{\tau})^{-m} e^{-\widetilde{f}} dv, \\ &\int_{\mathcal{V}} e^{-\widetilde{f}} dv = const. \end{split}$$

slide 19: Thermodynamical values

Remarks: stochastic processes, diffusion, fractional calculus, quantum entropy....

Theor. a) canonical thermodynamic values on $\mathcal{T}^{\mathsf{E}}\mathbf{E}$

$$\left\langle \widehat{E} \right\rangle = -\widehat{\tau}^2 \int_{\mathcal{V}} (\ ^s \widehat{\mathbf{R}} + |\widehat{\mathcal{D}}\widehat{f}|^2 - \frac{m}{\widehat{\tau}}) \widehat{\mu} \ dv, \widehat{S} = -\int_{\mathcal{V}} [\widehat{\tau} (\ ^s \widehat{\mathbf{R}} + |\widehat{\mathcal{D}}\widehat{f}|^2) + \widehat{f} - 2m] \widehat{\mu} \ dv$$

$$\widehat{\sigma} = 2 \ \widehat{\tau}^4 \int_{\mathcal{V}} [|\widehat{\mathbf{R}}_{\overline{\alpha}\overline{\beta}} - \widehat{\mathbf{Z}}ic_{\overline{\alpha}\overline{\beta}} + (\widetilde{\mathcal{D}}_{\overline{\alpha}} - \widehat{\mathcal{Z}}_{\overline{\alpha}})(\widehat{\mathcal{D}}_{\overline{\beta}} - \widehat{\mathcal{Z}}_{\overline{\beta}})\widehat{f} - \frac{1}{2\widehat{\tau}} \mathbf{g}_{\overline{\alpha}\overline{\beta}}|^2] \widehat{\mu} \ dv$$
b) and/or by effective Lagrange and/or almost Kähler Ricci flows on $\mathcal{K}^{\mathsf{E}}\mathbf{F}$

b) and/or by effective Lagrange and/or almost Kähler Ricci flows on $\mathcal{K}^{\mathsf{E}}\mathbf{E},$

$$\begin{split} \left\langle \tilde{E} \right\rangle &= -\tilde{\tau}^2 \int_{\overline{\mathcal{V}}} (\ ^s \widetilde{\mathbf{R}} + |\widetilde{\mathcal{D}} \tilde{f}|^2 - \frac{m}{\tilde{\tau}}) \tilde{\mu} \ dv, \\ \tilde{\sigma} &= 2 \ \tilde{\tau}^4 \int_{\overline{\mathcal{V}}} [|\widetilde{\mathbf{R}}_{\overline{\alpha}\overline{\beta}} + \widetilde{\mathcal{D}}_{\overline{\alpha}} \widetilde{\mathcal{D}}_{\overline{\beta}} \tilde{f} - \frac{1}{2\tilde{\tau}} \widetilde{\mathbf{g}}_{\overline{\alpha}\overline{\beta}}|^2] \tilde{\mu} \ dv \end{split}$$

Proof: using
$$\tilde{Z}=\exp\left\{\int_{\overline{\mathcal{V}}}[-\tilde{f}+m]\ \tilde{\mu}dv\right\}$$
 on $\mathcal{K}^{\mathsf{E}}\mathbf{E},\ \nabla\to\widehat{\mathcal{D}},\ \text{or }\nabla\to\widetilde{\mathcal{D}}$

partition funct $Z = \int \exp(-\beta E) d\omega(E)$ for a canonical ansamble at temperature β^{-1} ; temperature is defined by the measure determined by the density of states $\omega(E)$; statistical analogy computing thermodynamical values: $\langle E \rangle := -\partial \log Z/\partial \beta$, entropy $S := \beta \langle E \rangle + \log Z$ and the fluctuation $\sigma := \langle (E - \langle E \rangle)^2 \rangle = \partial^2 \log Z/\partial \beta^2$

slide 20: almost Kähler Solitons with Lie Algebroid Symmetries

Preliminaries on Lie d-algebroid solitons

Def. The geometric data $[\overline{\mathbf{g}} \sim \tilde{\mathbf{g}}, \mathcal{L}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{D}}] \approx [\tilde{\theta}(\cdot, \cdot) := \tilde{\mathbf{g}}(\widetilde{\mathcal{J}} \cdot, \cdot), \ ^{\theta}\widetilde{\mathcal{D}} = \overline{\nabla} + \widetilde{\mathcal{Z}}]$ for a complete Riemannian metric $\overline{\mathbf{g}}$ on a smooth $\mathcal{T}^{\mathsf{E}}\mathbf{E}$, $\mathcal{K}^{\mathsf{E}}\mathbf{E}$ define a gradient almost Kähler–Ricci d–algebroid soliton if \exists a smooth potential function $\tilde{\kappa}(x^i, y^C)$

$$\begin{split} \widetilde{\mathbf{R}}_{\ \overline{\beta}\overline{\gamma}} + \widetilde{\mathcal{D}}_{\overline{\beta}}\widetilde{\mathcal{D}}_{\overline{\gamma}}\widetilde{\kappa} &= \lambda \widetilde{\mathbf{g}}_{\ \overline{\beta}\overline{\gamma}}, \\ \text{equivalently, } {}^{\theta}\widetilde{\mathbf{R}}_{\ \overline{[\beta}\overline{\gamma}]} + {}^{\theta}\widetilde{\mathcal{D}}_{\overline{[\beta}} \ {}^{\theta}\widetilde{\mathcal{D}}_{\overline{\gamma}]}\widetilde{\kappa} &= {}^{\lambda}\widetilde{\theta}_{\ \overline{\beta}\overline{\gamma}}, \end{split}$$

 \exists three types: $\lambda = const$: steady ones, for $\lambda = 0$; shrinking, for $\lambda > 0$; and expanding, for $\lambda < 0$.

Prop. Let $(\overline{\mathbf{g}} \sim \widetilde{\mathbf{g}}, \mathcal{L}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{D}}; \widetilde{\kappa})$ be a complete shrinking soliton on $\mathcal{T}^{\mathsf{E}} \mathbf{E}, \mathcal{K}^{\mathsf{E}} \mathbf{E}$. Using nonholonomic frame deformations, redefined $\widehat{\kappa}(x^i, y^C)$, for $\overline{\mathbf{q}} \sim \widetilde{\mathbf{q}}$.

$$\widehat{\mathbf{R}}_{\ \overline{\beta}\overline{\gamma}} + \widehat{\mathcal{D}}_{\overline{\beta}}\widehat{\mathcal{D}}_{\overline{\gamma}}\widehat{\kappa} = \lambda \overline{\mathbf{g}}_{\ \overline{\beta}\overline{\gamma}}$$

 $\widehat{\mathcal{Z}}=0$ and/or $\widetilde{\mathcal{Z}}=0$ result in the Levi–Civita configurations.

4 D > 4 D > 4 D > 4 D >

slide 21: Generalized Einstein eqs encoding Lie d–algebroid structures

$$\widehat{\mathcal{D}}_{\overline{\gamma}}\widehat{\kappa} = \mathbf{e}_{\overline{\gamma}}\widehat{\kappa} = \kappa_{\overline{\gamma}} = \textit{const}, \text{ i.e. } \delta_{\textit{a}}\widehat{\kappa} = \mathcal{X}_{\textit{a}}\widehat{\kappa} - \mathcal{N}_{\textit{a}}^{\textit{C}}\kappa_{\textit{C}} = 0 \text{ and } \mathcal{V}_{\textit{A}}\widehat{\kappa} = \kappa_{\textit{A}}.$$

E = **P** with 2 + 2 splitting,
$$a, b, ... = 1, 2; i', j', ... = 1, 2$$
 and $A, B, ... = 3, 4$. $u^{\mu} = (x^{i}, y^{a}) = (x^{1}, x^{2}, y^{3}, y^{4})$, on \mathcal{T}^{E} **E**, **g** $\rightarrow \overline{\mathbf{g}}$,

Prime metric

$$\mathbf{g} = \mathring{g}_{\alpha}(u)\mathbf{e}^{\alpha} \otimes \mathbf{e}^{\beta} = \mathring{g}_{i}(x)dx^{i} \otimes dx^{i} + \mathring{h}_{a}(x,y)\mathbf{e}^{a} \otimes \mathbf{e}^{a},$$

$$\mathbf{e}^{\alpha} = (dx^{i}, \mathbf{e}^{a} = dy^{a} + \mathring{N}_{i}^{a}(u)dx^{i}),$$

$$\mathbf{e}_{\alpha} = (\mathbf{e}_{i} = \partial/\partial y^{a} - \mathring{N}_{i}^{b}(u)\partial/\partial y^{b}, \ \mathbf{e}_{a} = \partial/\partial y^{a}).$$

$$h^* := \partial_3 \text{ and } \mathcal{N}_a^3 = w_a(x^k, y^3), \, \mathcal{N}_a^4 = n_a(x^k, y^3).$$

Target metric

$$\overline{\mathbf{g}} = \mathbf{g}_{\overline{\alpha}\overline{\beta}} \mathbf{e}^{\overline{\beta}} \otimes \mathbf{e}^{\overline{\beta}} = \mathbf{g}_{a} \, \mathcal{X}^{a} \otimes \mathcal{X}^{a} + \mathbf{g}_{A} \, \delta^{A} \otimes \delta^{A}
= \eta_{a}(\mathbf{x}^{k}) \mathring{\mathbf{g}}_{a} \mathcal{X}^{a} \otimes \mathcal{X}^{a} + \eta_{A}(\mathbf{x}^{k}, \mathbf{y}^{3}) \mathring{h}_{A} \delta^{A} \otimes \delta^{A}$$

4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○
6□○</p

slide 22:

Propos. $\partial_A \to \mathcal{X}_A$ and $\mathcal{V}_A = \partial_A$

$$\begin{split} -\widehat{\mathbf{R}}_{1}^{1} &= -\widehat{\mathbf{R}}_{2}^{2} = \frac{1}{2g_{1}g_{2}} [\mathcal{X}_{1}(\mathcal{X}_{1}g_{2}) - \frac{\mathcal{X}_{1}g_{1}}{2g_{1}} - \frac{(\mathcal{X}_{1}g_{2})^{2}}{2g_{2}} \\ &+ \mathcal{X}_{2}(\mathcal{X}_{2}g_{1}) - \frac{\mathcal{X}_{2}g_{1}}{2g_{2}} - \frac{(\mathcal{X}_{2}g_{1})^{2}}{2g_{1}}] = \lambda, \\ -\widehat{\mathbf{R}}_{3}^{3} &= -\widehat{\mathbf{R}}_{4}^{4} = \frac{1}{2h_{3}h_{4}} [h_{4}^{**} - \frac{(h_{4}^{*})^{2}}{2h_{4}} - \frac{h_{3}^{*}h_{4}^{*}}{2h_{3}}] = \lambda, \\ \widehat{\mathbf{R}}_{3a} &= \frac{w_{a}}{2h_{4}} [h_{4}^{**} - \frac{(h_{4}^{*})^{2}}{2h_{4}} - \frac{h_{3}^{*}h_{4}^{*}}{2h_{3}}] + \frac{h_{4}^{*}}{4h_{4}} (\frac{\mathcal{X}_{a}h_{3}}{h_{3}} + \frac{\mathcal{X}_{a}h_{4}}{h_{4}}) - \frac{\mathcal{X}_{a}h_{4}^{*}}{2h_{4}} = 0, \\ \widehat{\mathbf{R}}_{4a} &= \frac{h_{4}}{2h_{3}} n_{a}^{**} + (\frac{h_{4}}{h_{3}}h_{3}^{*} - \frac{3}{2}h_{4}^{*}) \frac{n_{a}^{*}}{2h_{3}} = 0; \end{split}$$

for the potential function $\mathcal{X}_{a}\widehat{\kappa} - w_{a}\kappa_{3} - n_{a}\kappa_{4} = 0$ and $\mathcal{V}_{A}\widehat{\kappa} = \kappa_{A}$, LC conditions $\widehat{\mathcal{Z}} = 0$:

 $w_a^* = (\mathcal{X}_a - w_a \partial_3) \ln \sqrt{|h_3|}, (\mathcal{X}_a - w_a \partial_3) \ln \sqrt{|h_4|} = 0, \mathcal{X}_b w_a = \mathcal{X}_a w_b, n_a^* = 0, \partial_a n_b = \partial_b n_a.$

a nontrivial source λ , $g_a = \epsilon_a e^{\psi(x^k)}$, $\epsilon_a = \pm 1$ and $h_a^* \neq 0$,

slide 23: Generating off-diagonal solutions

Theor. PDEs decouple in N-adapted form.

$$\begin{array}{rcl} \epsilon_1 \mathcal{X}_1(\mathcal{X}_1 \psi) + \epsilon_2 \mathcal{X}_2(\mathcal{X}_2 \psi) & = & 2 \, \lambda \\ \phi^* h_4^* & = & 2 h_3 h_4 \lambda \\ \beta \textit{\textbf{w}}_A - \alpha_A & = & 0, \\ n_A^{**} + \gamma n_A^* & = & 0, \\ \end{array}$$
 for $\alpha_A = h_4^* \partial_A \phi, \beta = h_4^* \, \phi^*, \gamma = \left(\ln |h_4|^{3/2} / |h_3| \right)^*,$ generating function $\phi = \ln |h_4^* / \sqrt{|h_3 h_4|}|$

LC-solutions:

$$ds^2 = e^{\psi(x^k)} [\epsilon_1(\mathcal{X}^1)^2 + \epsilon_2(\mathcal{X}^2)^2] + \epsilon_3 \frac{(\dot{\Phi}^*)^2}{\lambda \dot{\Phi}^2} [\mathcal{V}^3 + (\mathcal{X}_a \widetilde{A} [\check{\Phi}]) \mathcal{X}^a]^2 + \epsilon_4 \frac{\dot{\Phi}^2}{4|\lambda|} [\mathcal{V}^4 + (\mathcal{X}_a n) \mathcal{X}^a]^2$$

the solutions defining Ricci solitons can be with nontrivial torsion. Remark: nonholonomically induced torsion.

$$\textit{ds}^{2} = e^{\psi(x^{k})}[\epsilon_{1}(\mathcal{X}^{1})^{2} + \epsilon_{2}(\mathcal{X}^{2})^{2}] + \epsilon_{3}(z_{3})^{2}[\mathcal{V}^{3} + \frac{\mathcal{X}_{a}\Phi}{\Phi^{*}}\mathcal{X}^{a}]^{2} + \epsilon_{4}(z_{4})^{2}[\mathcal{V}^{4} + (\ _{1}\textit{n}_{a} + \ _{2}\textit{n}_{a}\int\textit{d}y^{3}\frac{(z_{3})^{2}}{(z_{4})^{3}})\mathcal{X}^{a}]^{2}$$

where the values $z_3(x^k, y^3)$ and $z_4(x^k, y^3)$

page 24: Nonholonomic spinors and Dirac operators

Clifford d-algebra, $\wedge V^{n+m}$ algebra, product uv + vu = 2g(u, v) I:

$${}^{h}u {}^{h}v + {}^{h}v {}^{h}u = 2 {}^{h}g(u, v) {}^{h}\mathbb{I}, , {}^{v}u {}^{v}v + {}^{v}v {}^{v}u = 2 {}^{v}h({}^{v}u, {}^{v}v) {}^{v}\mathbb{I},$$

 $\mathbf{u} = (hu, vu), \mathbf{v} = (hv, vv) \in V^{n+m}, \mathbb{I}, h\mathbb{I}$ and $v\mathbb{I}$ are unity matrices $(n+m)\times(n+m)$, or $n\times n$ and $m\times m$.

A metric ^hg on hV is defined by sections of ThV provided with a bilinear symmetric form on continuous sections $\Gamma(T hV)$. Clifford h-algebras ${}^{h}CI(T_xh\mathbf{V})$, in any point $x \in Th\mathbf{V}$,

$$\gamma_i \gamma_j + \gamma_j \gamma_i = 2 g_{ij}^h \mathbb{I}.$$

Definition: A Clifford d–space on V, with g(x, y) and N is a Clifford bundle $CI(\mathbf{V}) = {}^{h}CI(h\mathbf{V}) \oplus {}^{v}CI(v\mathbf{V})$, Clifford h-space ${}^{h}CI(h\mathbf{V}) \doteq {}^{h}CI(T^{*}h\mathbf{V})$, Clifford v-space ${}^{\nu}CI(\nu V) \doteq {}^{\nu}CI(T^*\nu V)$.

> <ロト 4回 ト 4 恵 ト 4 恵 ト 一 恵 . naa

page 25: (Almost Kähler) N-adapted Dirac operators

d–gamma matrix relations $\gamma^{\hat{\alpha}}\gamma^{\hat{\beta}} + \gamma^{\hat{\beta}}\gamma^{\hat{\alpha}} = 2\delta^{\hat{\alpha}\hat{\beta}} \mathbb{I}$. action of $du^{\alpha} \in \mathcal{C}I(\mathbf{V})$ on a d-spinor $\check{\psi} \in \mathbf{S}$, $\mathbf{c}(du^{\hat{\alpha}}) \doteq \gamma^{\hat{\alpha}}$, $\mathbf{c} = (du^{\alpha}) \ \breve{\psi} \doteq \gamma^{\alpha} \ \breve{\psi} \equiv e^{\alpha}_{\hat{\alpha}} \ \gamma^{\hat{\alpha}} \ \breve{\psi},$

$$\gamma^{\alpha}(u)\gamma^{\beta}(u) + \gamma^{\beta}(u)\gamma^{\alpha}(u) = 2g^{\alpha\beta}(u) \mathbb{I}.$$

Canon. spin Cartan d–con.: $\frac{\theta}{S}\widehat{\nabla} \doteq {}^{L}\delta - \frac{1}{4} {}^{\theta}\widehat{\Gamma}^{\alpha}_{\beta\mu}\gamma_{\alpha}\gamma^{\beta} \delta u^{\mu}$.

Definition: The Dirac d-operator (h-operator) on a spin N-anholonomic manifold (V, S, J) (h-spin manifold $(hV, {}^hS, {}^hJ)$, or v-spin manifold $(vV, {}^{V}S, {}^{V}J))$ is

$$\mathbb{D} \doteq -i \left(\widehat{\mathbf{c}} \circ \ _{\mathbf{S}} \nabla \right) = \left(\ ^h \mathbb{D} = -i \left(\ ^h \widehat{\mathbf{c}} \circ \ _{\mathbf{S}}^h \nabla \right), \ ^v \mathbb{D} = -i \left(\ ^v \widehat{\mathbf{c}} \circ \ _{\mathbf{S}}^v \nabla \right) \right)$$

Dirac d-operators are called almost Kähler and denoted $_{\theta}\widehat{\mathbb{D}}=(^{h}_{a}\widehat{\mathbb{D}},^{v}_{a}\widehat{\mathbb{D}})$ if defined for the Cartan/ normal d-connection.

page 26: The spectral action/functional paradigm:

Standard models, particles & "extracted" from noncommut. geometry.

spectral triple $(A, \mathcal{H}, \mathcal{D})$, postulating action $Tr f(\mathcal{D}^2/\Lambda^2) + \langle \Psi | \mathcal{D} | \Psi \rangle$. Tr is the trace in operator algebra, Ψ is a spinor, all defined for a Hilbert space \mathcal{H} , Λ is a cutoff scale and f is a positive function. Spectral action depends on spectrum of Dirac operator \mathcal{D} on a space defined by a noncommutative associative algebra $\mathcal{A} = C^{\infty}(V) \otimes {}^{P}\mathcal{A}$.

Spectral geometry of \mathcal{A} : product rule $\mathcal{H} = L^2(V, S) \otimes {}^{P}\mathcal{H}$. Hilbert sp. L^2 spinors $L^2(V, S)$. Hilbert space of quarks and leptons ${}^{P}\mathcal{H}$ fixing the choice of the Dirac operator ${}^{P}D$ & action ${}^{P}\mathcal{A}$ for fund. particles. Dirac operator $\mathcal{D} = {}^V D \otimes 1 + \gamma_5 \otimes {}^P D$, Dirac operator ${}^V D$ of the Levi–Civita spin connection on V. Spectral functionals contain in commutative limit the Perelman's functionals for Ricci flows.

Scal prod on
$$\Gamma^{\infty}(\mathbf{S}), \langle \check{\psi}, \check{\phi} \rangle = \int_{\mathbf{V}} (\check{\psi}|\check{\phi}) |\nu_{\mathbf{g}}|, \mathbf{V} : \ \nu_{\mathbf{g}} = \sqrt{\det |g| \ \det |h|} \ dx^{1} ... dx^{n} \ dy^{n+1} ... dy^{n+m}$$
 Hilbert d–space by completing $\Gamma^{\infty}(\mathbf{S})$, sc. pr. $^{N}\mathcal{H} := L_{2}(\mathbf{V}, \mathbf{S}) = [^{h}\mathcal{H} = L_{2}(h\mathbf{V}, ^{h}S), ^{v}\mathcal{H} = L_{2}(v\mathbf{V}, ^{v}S)]$

A canonical (almost Kähler) spectral d-triple (^{N}A , ^{N}H , $_{\theta}\widehat{\mathbb{D}}$) for a d-algebra ^{N}A is defined by 1) a Hilbert d-space $^{N}\mathcal{H}$, 2) a representation of $^{N}\mathcal{A}$ in the algebra $^{N}\mathcal{B}(^{N}\mathcal{H})$ of d-operators bounded on $^{N}\mathcal{H}$. 3) by a self-adjoint d-operator $^{N}\mathcal{H}$, of compact resolution (an operator D is of compact resolution if for any $\lambda \in sp(D)$ the operator $(D - \lambda \mathbb{I})^{-1}$ is compact) such that $[^{N}\mathcal{H}, a] \in {}^{N}\mathcal{B}(^{N}\mathcal{H})$ for any $a \in {}^{N}\mathcal{A}$.

page 27: Spectral triples and distance in d-spinor spaces

Theorem: (Distance) Let $({}^{N}\mathcal{A}, {}^{N}\mathcal{H}, {}_{\theta}\widehat{\mathbb{D}}, \mathbf{J}, {}_{[\sigma]}\Gamma)$ a noncom. geometry, irreducible for

 ${}^{N}\mathcal{A} \doteq C^{\infty}(\mathbf{V})$, where **V** is a compact, connected and oriented manifold without boundaries, of spectral dimension $\dim \mathbf{V} = n + n$. There are satisfied:

- **1** \exists a unique d–metric $\mathbf{g}(\theta \widehat{\mathbb{D}}) = (\theta g, \theta v_g)$, "nonlinear geodes." dist. on \mathbf{V} , $d(u_1,u_2)=\sup_{f\in C(\mathbf{V})}\left\{f(u_1,u_2)/\parallel [\ _{\theta}\widehat{\mathbb{D}},f]\parallel\leq 1\right\}, \ \forall \ \text{smooth} \ f\in C(\mathbf{V}).$
- 2 An almost Kähler model of N-anholonomic manifold V is a spin N-anholonomic space, operators $_{\theta}\widehat{\mathbb{D}}'$ satisfying the condition $\mathbf{g}(_{\theta}\widehat{\mathbb{D}}') = \mathbf{g}(_{\theta}\widehat{\mathbb{D}})$ (and canonically derived almost Kähler spaces with ${}^{L}\theta({}_{\theta}\widehat{\mathbb{D}}') = {}^{L}\theta({}_{\theta}\widehat{\mathbb{D}})$) define an union of affine spaces identified by the d-spinor structures on V.
- 3 The functional $S(\theta \widehat{\mathbb{D}}) = \int |\theta \widehat{\mathbb{D}}|^{-n-n+2} defines a quadratic d-form with$ (n+n)—splitting for every affine space which is minimal for $\widehat{\theta} = \widehat{\theta}$ as the canonical almost Kähler Dirac d-operator corresponding to the d-spin structure with the minimum proportional to the Einstein-Hilbert action for the canonical Cartan/ normal d-connection with d-scalar curv. ${}^{s}_{\theta}\mathbf{R}$,

$$\mathcal{S}(\ _{\theta}\overset{\longleftarrow}{\mathbb{D}}) = -\tfrac{n-1}{12}\ \int_{\mathbf{V}}\ _{\theta}^{s}\mathbf{R}\ \sqrt{\ _{p}}\ \sqrt{\ _{v}h}\ dx^{1}...dx^{n}\ \delta y^{n+1}...\delta y^{n+n}.$$

page 28: Spectral nonholonomic flows and Perelman functionals

Family of generalized d-operators

$${}_{\theta}\mathcal{D}^{2}(\chi) = -[\frac{\mathbb{I}}{2} {}^{L}\theta^{\alpha\beta}(\chi)[{}^{L}\mathbf{e}_{\alpha}(\chi) {}^{L}\mathbf{e}_{\beta}(\chi) - {}^{L}\mathbf{e}_{\beta}(\chi) {}^{L}\mathbf{e}_{\alpha}(\chi)] + \mathbf{A}^{\nu}(\chi) {}^{L}\mathbf{e}_{\nu}(\chi) + \mathbf{B}(\chi)]$$

 $\chi \in [0, \chi_0)$, matrices $\mathbf{A}^{\nu}(\chi)$ and $\mathbf{B}(\chi)$ determined by $_{\theta}\mathbb{D}$ induced by $_{\theta}\mathbf{D}$; for the Cartan/ normal d–connection, $_{\theta}\widehat{\mathcal{D}}^{2}, \widehat{\mathbf{A}}^{\nu}$ and $\widehat{\mathbf{B}}$. We introduce functionals \mathcal{F} and \mathcal{W} depending on χ .

$$\mathcal{F} = \operatorname{Tr} \left[{}^{1}f(\chi)({}^{1}{}^{\phi}\mathcal{D}^{2}(\chi)/\Lambda^{2}) \right] \simeq \sum_{k \geq 0} {}^{1}f_{(k)}(\chi) {}^{1}a_{(k)}({}^{1}{}^{\phi}\mathcal{D}^{2}(\chi)/\Lambda^{2})$$

$$\mathcal{W} = {}^{2}\mathcal{W} + {}^{3}\mathcal{W},$$
 for ${}^{e}\mathcal{W} = \operatorname{Tr} \left[{}^{e}f(\chi)({}^{e}{}^{\phi}\mathcal{D}^{2}(\chi)/\Lambda^{2}) \right] = \sum_{k \geq 0} {}^{e}f_{(k)}(\chi) {}^{e}a_{(k)}({}^{e}{}^{\phi}\mathcal{D}^{2}(\chi)/\Lambda^{2}),$

cutting parameter Λ^2 for both cases e = 2, 3. Functions bf , with label b taking values 1, 2, 3. Coefficients computed as "N-adapted" Seeley - de Witt coefficients.

4 D > 4 D > 4 D > 4 D >

page 29: Main Theorems on "noncommutative" Perelman functionals

Theorem: For the scaling factor $^{1}\phi = -f/2$, the first spectral functional $\mathcal{F} = {}^{P}\mathcal{F}({}^{L}\theta, {}_{\theta}\mathbf{D}, f)$ can be approximated as the first Perelman functional

$${}^{P}\mathcal{F} = \int_{\mathbf{V}} \delta V \; e^{-f} [\, {}_{s}^{\theta} \mathbf{R} (e^{-f \; \mathcal{L}} \theta_{\mu
u}) + rac{3}{2} e^{f \; \mathcal{L}} \theta^{lpha eta} (\, {}^{\mathcal{L}} \mathbf{e}_{lpha} f \, {}^{\mathcal{L}} \mathbf{e}_{eta} f - \, {}^{\mathcal{L}} \mathbf{e}_{eta} f \, {}^{\mathcal{L}} \mathbf{e}_{lpha} f)].$$

Theorem: 2d spectr.funct. $W = {}^{P}W({}^{L}\theta, {}_{\theta}\mathbf{D}, f)$ is approx. as 2d Perelman funct.

$$^{P}\mathcal{W} = \int_{\mathbf{V}} \delta V \mu \times [\chi(^{\theta}_{s}\mathbf{R}(e^{-f}^{\ L}\theta_{\mu
u}) + \frac{3}{2}e^{f}^{\ L}\theta^{lphaeta}(^{\ L}\mathbf{e}_{lpha}f^{\ L}\mathbf{e}_{eta}f - ^{\ L}\mathbf{e}_{eta}f^{\ L}\mathbf{e}_{lpha}f)) + f - 2],$$

for scaling $^{2}\phi = -f/2$ in ^{2}W , $^{3}\phi = (\ln|f-2|-f)/2$ in ^{3}W .

Conclusion: The Ricci flow theory of almost Kähler - Finsler/ -Lagrange / -Einstein spaces can be extracted from noncommutative geometry.

> 4 D F 4 D F 4 D F 4 D F 5 naa

page 30: Ricci Solitons & DQ

Aim: Perform DQ using N-adapted frames (for Fedosov operators), the Cartan d–connection and distortions with Neijenhuis tensor, → star product.

$$\check{\Gamma}_{\beta'\gamma'}^{\alpha'} = \check{\mathbf{e}}_{\ \alpha}^{\alpha'} \check{\mathbf{e}}_{\beta'}^{\ \beta} \check{\mathbf{e}}_{\gamma'}^{\ \gamma} \Gamma_{\beta\gamma}^{\alpha} + \check{\mathbf{e}}_{\ \alpha}^{\alpha'} \mathbf{e}_{\gamma} (\check{\mathbf{e}}_{\beta'}^{\ \alpha}), \ \check{\Gamma}' = \Gamma + \check{Z}$$

$$\check{\mathbf{e}}_{\nu'} = \check{\mathbf{e}}_{\nu'}^{\ \nu}(u)\mathbf{e}_{\nu}\ \check{\mathbf{e}}^{\nu'} = \check{\mathbf{e}}_{\nu}^{\nu'}(u)\mathbf{e}^{\nu}, \text{ new sets } \check{\mathbf{N}} = \{\check{N}_{j}^{a'}\} \text{ when } \check{\mathbf{T}}_{\beta\gamma}^{\alpha} = (1/4)\check{\Omega}_{\beta\gamma}^{\alpha}.$$

"Formal power" series and Wick product

 $C^{\infty}(V)[[\ell]]$ of "formal series" on ℓ with coefficients from $C^{\infty}(V)$ on a Poisson $(V, \{\cdot, \cdot\})$, where the bracket $\{\cdot, \cdot\}$. Operator

$$^{1}f*^{2}f = \sum_{r=0}^{\infty} {}_{r}C(^{1}f, ^{2}f) \ell^{r},$$

 $_{r}C, r > 0$, are bilinear operators with $_{0}C(^{1}f, ^{2}f) = ^{1}f^{2}f$ and $_{1}C(^{1}f,^{2}f) - _{1}C(^{2}f,^{1}f) = i\{^{1}f,^{2}f\}; i^{2} = -1; \text{ an associative algebra}$ structure on $C^{\infty}(V)[[\ell]]$ with a ℓ -linear and ℓ -addical continuous star product.

page 31

Local coordinates $(u, z) = (u^{\alpha}, z^{\beta})$, on TV; elements as series

$$\mathbf{a}(\mathbf{v},\mathbf{z}) = \sum_{r \geq 0, |\{\alpha\}| \geq 0} \ \mathbf{a}_{r,\{\alpha\}}(\mathbf{u}) \mathbf{z}^{\{\alpha\}} \ \ell^r, \ \text{ is a multi--index}\{\alpha\}$$

On $T_{\nu}V$, a formal Wick product with $\check{\Lambda}^{\alpha\beta} := \check{\theta}^{\alpha\beta} - i \check{\mathbf{g}}^{\alpha\beta}$,

$$a\circ b\ (z):=\exp\left(irac{\ell}{2}\ \check{\Lambda}^{lphaeta}rac{\partial^2}{\partial z^lpha\partial z^eta_{[1]}}
ight)a(z)b(z_{[1]})\mid_{z=z_{[1]}}$$

The d-connection extended on space $\mathcal{\check{W}} \otimes \check{\Lambda}$ to operator

$$\check{\mathbf{D}}\left(a\otimes\xi\right):=\left(\check{\mathbf{e}}_{\alpha}(a)-u^{\beta}\,\check{\mathsf{\Gamma}}_{\alpha\beta}^{\gamma}\,{}^{z}\check{\mathbf{e}}_{\alpha}(a)\right)\otimes\left(\check{\mathbf{e}}^{\alpha}\wedge\xi\right)+a\otimes d\xi,$$

where ${}^{z}\check{\mathbf{e}}_{\alpha}$ is a similar to $\check{\mathbf{e}}_{\alpha}$ but depend on z-variables. This operator is a N-adapted deg_a-graded derivation of the d-algebra $(\check{\mathcal{W}} \otimes \check{\Lambda}, \circ)$.

May 30, 2013

page 32: Fedosov N-adapted operators

Definition: The Fedosov N-adapted operators are

$$\check{\delta}(a) = \check{\mathbf{e}}^{\alpha} \wedge {}^{z}\check{\mathbf{e}}_{\alpha}(a) \text{ and } \check{\delta}^{-1}(a) = \left\{ \begin{array}{c} \frac{i}{p+q} z^{\alpha} \check{\mathbf{e}}_{\alpha}(a), \text{ if } p+q>0, \\ 0, \text{ if } p=q=0, \end{array} \right.$$

 $a \in \mathcal{W} \otimes \Lambda$ is homogeneous w.r.t. the grading $\deg_s(a) = p, \deg_a(a) = q$.

Theorem: Any d-metric/ equivalent symplectic structure, $\check{\theta}(\cdot,\cdot) := \mathbf{g}(\mathbf{J}_{\cdot},\cdot)$, define a flat canonical Fedosov d-connection $\check{\mathcal{D}}: -\check{\delta} + \check{\mathbf{D}} - \frac{i}{a} ad_{Wick}(r); \; \check{\mathcal{D}}^2 = 0; \exists a unique$ element $r \in \check{\mathcal{W}} \otimes \check{\Lambda}$, $\deg_a(r) = 1$, $\check{\delta}^{-1}r = 0$, solving $\check{\delta}r = \check{\mathcal{T}} + \check{\mathcal{R}} + \check{\mathbf{D}}r - \frac{i}{\ell}r \circ r$. Recursively.

$$\begin{split} r^{(0)} &= r^{(1)} = 0, \ r^{(2)} = \check{\delta}^{-1} \ \check{\mathcal{T}} \ , \\ r^{(3)} &= \check{\delta}^{-1} (\check{\mathcal{R}} + \check{\mathbf{D}} r^{(2)} - \frac{i}{\ell} r^{(2)} \circ r^{(2)}), \\ r^{(k+3)} &= \check{\delta}^{-1} (\check{\mathbf{D}} r^{(k+2)} - \frac{i}{\ell} \sum_{l=0}^{k} r^{(l+2)} \circ r^{(l+2)}), \\ k \geq 1, \end{split}$$

 $a^{(k)}$ is the *Deg*-homogeneous component of degree k of $a \in \mathcal{W} \otimes \Lambda$.

page 33: Main theorems for Fedosov-Ricci solitons

Analogs of torsion and curvature operators of $\check{\mathbf{D}}$ on $\check{\mathcal{W}} \otimes \check{\Lambda}$,

$$\check{\mathcal{T}} \; := \frac{z^{\gamma}}{2} \; \check{\theta}_{\gamma\tau} \; \check{\mathbf{T}}^{\tau}_{\alpha\beta}(u) \; \check{\mathbf{e}}^{\alpha} \wedge \check{\mathbf{e}}^{\beta}, \qquad \check{\mathcal{R}} := \frac{z^{\gamma}z^{\varphi}}{4} \check{\theta}_{\gamma\tau} \check{\mathbf{R}}^{\tau}_{\varphi\alpha\beta}(u) \; \check{\mathbf{e}}^{\alpha} \wedge \check{\mathbf{e}}^{\beta}$$

Properties: $[\check{\mathbf{D}}, \check{\delta}] = \frac{i}{\ell} a d_{Wick}(\check{\mathcal{T}})$ and $\check{\mathbf{D}}^2 = -\frac{i}{\ell} a d_{Wick}(\check{\mathcal{R}})$.

The bracket $[\cdot,\cdot]$ is the deg_a-graded commutator of endomorphisms of $\mathcal{W}\otimes \mathring{\Lambda}$ and ad_{Wick} is defined via the deg_a-graded commutator in $(\check{\mathcal{W}} \otimes \check{\Lambda}, \circ)$.

Theorem 1: A star–product for the almost Kähler model

of a nonholonomic Ricci soliton is defined on $C^{\infty}(\mathbf{V})[[\ell]]$ by

$$^{1}f*\ ^{2}f \doteq \sigma(\tau(\ ^{1}f)) \circ \sigma(\tau(\ ^{2}f)),$$

where the projection $\sigma: \check{\mathcal{W}}_{\kappa_{\mathcal{D}}} \to C^{\infty}(\mathbf{V})[[\ell]]$ onto the part of deg_s-degree zero is a bijection and the inverse map $\tau: C^{\infty}(\mathbf{V})[[\ell]] \to \check{\mathcal{W}}_{\mathfrak{D}}$ can be calculated recursively w.r..t the total degree $Deg_{,\tau}(f)^{(0)} = f_{,\tau}(f)^{(0)}$

$$\tau(f)^{(k+1)} = \ \check{\delta}^{-1} \left(\check{\mathbf{D}} \tau(f)^{(k)} - \tfrac{i}{\nu} \sum_{l=0}^k ad_{\textit{Wick}}(r^{(l+2)}) (\tau(f)^{(k-l)}) \right), \, \text{for} \, \, k \geq 0.$$

page 34:

 f_{ξ} is the Hamiltonian vector field for a function $f \in C^{\infty}(V)$ on $(V, \check{\theta})$. Antisymmetric ${}^{-}C({}^{1}f, {}^{2}f) := \frac{1}{2}(C({}^{1}f, {}^{2}f) - C({}^{2}f, {}^{1}f))$ of bilinear $C({}^{1}f, {}^{2}f)$.

A star-product is normalized if ${}_{1}C({}^{1}f,{}^{2}f)=\frac{i}{2}\{{}^{1}f,{}^{2}f\},\{\cdot,\cdot\}$ is the Poisson bracket defined by $\check{\theta}$. For a normalized *, the bilinear $\frac{1}{2}C$ is a de Rham-Chevalley 2-cocycle \exists a unique closed 2-form \varkappa , ${}_{2}C({}^{1}f, {}^{2}f) = \frac{1}{2} \varkappa ({}^{f_{1}}\xi, {}^{f_{2}}\xi) \forall {}^{1}f, {}^{2}f \in C^{\infty}(\mathbf{V}).$

Consider the class c_0 of a normalized star–product * as the equivalence class $c_0(*) \neq [\varkappa]$, computed as a unique 2-form.

$$\grave{\varkappa} = -\frac{i}{8} \mathring{\mathbf{J}}_{\tau}^{\;\alpha'} \mathring{\mathbf{R}}_{\;\alpha'\alpha\beta}^{\tau} \, \check{\mathbf{e}}^{\alpha} \wedge \, \check{\mathbf{e}}^{\beta} - i \, \check{\lambda}, \text{ for } \check{\lambda} = d \, \check{\mu}, \; \check{\mu} = \frac{1}{6} \mathring{\mathbf{J}}_{\tau}^{\;\alpha'} \, \mathring{\mathbf{T}}_{\;\alpha'\beta}^{\tau} \, \check{\mathbf{e}}^{\beta}.$$

The h- and v-projections $h\Pi = \frac{1}{2}(Id_h - iJ_h)$ and $v\Pi = \frac{1}{2}(Id_V - iJ_V)$.

The final step is to compute the closed Chern-Weyl form

$$\label{eq:definition} \check{\gamma} = -i \textit{Tr} \left[\left(h \Pi, \nu \Pi \right) \check{\mathbf{R}} \left(h \Pi, \nu \Pi \right) \check{\mathbf{T}} \right] = -i \textit{Tr} \left[\left(h \Pi, \nu \Pi \right) \check{\mathbf{R}} \right] = -\frac{1}{4} \check{\mathbf{J}}_{\tau}^{\; \alpha'} \check{\mathbf{R}}_{\; \alpha' \alpha \beta}^{\; \tau} \, \check{\mathbf{e}}^{\alpha} \wedge \check{\mathbf{e}}^{\beta}.$$

The canonical class is $\check{\varepsilon} := [\check{\gamma}] \to \text{proof of}$

Theorem 2: The zero-degree cohomology coefficient $c_0(*)$ for the almost Kähler

model of a nonholonomic Ricci soliton is $c_0(*) = -(1/2i) \xi$.

slide 35: Conclusions & Perspectives

Key results

- (Non) Commutative Ricci flow evolution theory for almost Kähler models of Lie algebroids endowed with canonical N-connection structure
- Decoupling property of the Ricci soliton eqs for nonholonomic Lie algebroids and exact solutions in Modified Gravity
- Deformation quantization of almost K\u00e4hler geometries and physical models

Directions for future

- Supersymmetric Ricci flows, quantum groups and deformation / geometric quantization of Lie algebroids
- Noncommutative Ricci flows on Lie algebroids, Dirac operators, spectral triples, generalized symplectic structures, quantum group models
- Modified gravity theories and algebroid Ricci solitions
- Exact solutions with generalized Lie algebroid symmetries (cosmological scenarios, brane models with generalized symmetries)

THANKS!

